Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Laboratory Study to Determine Impact of Na and K Exposure on the Durability of DOC and SCR Catalyst Formulations

2009-11-02
2009-01-2823
A laboratory flow reactor study was utilized to determine the durability impact of alkali metal (Na and K) exposure on three Pt/Pd-based diesel oxidation catalysts (DOC), two vanadium-based selective catalytic reduction (SCR) catalysts, and two Cu/zeolite-based SCR catalysts. All catalyst samples were contaminated by direct deposition of Na or K by an incipient wetness technique. The activity impact on the contaminated DOCs was accomplished by evaluating for changes in CO and HC light-off. The activity impact on the contaminated SCR catalysts was accomplished by evaluating for changes in the Standard SCR Reaction, the Fast SCR Reaction, the Ammonia Oxidation Reaction, and the Ammonia Storage Capacity. Contamination levels of 3.0 wt% Na was found to have a higher negative impact on Pt-based and zeolite containing DOCs for T-50 CO and HC light-off.
Technical Paper

Modeling and Measuring Exhaust Backpressure Resulting from Flow Restriction Through an Aftertreatment System

2003-03-03
2003-01-0939
This paper describes the pressure loss characteristics of a variety of substrates (with and without washcoat) that have different cell densities, lengths, and diameters. Both experimental and analytical approaches were used to determine pressure loss characteristics. Engine dynamometer testing was conducted as an experimental approach to measure pressure losses at several different speed and load points. A simple, but comprehensive, analytical model was also developed to estimate pressure loss and equivalent power loss in an exhaust system. The model provides for losses due to the substrate resistance and the inlet/outlet headers. The experimental approach demonstrated that the model was an effective tool to provide assistance during the screening of exhaust system design alternatives.
X