Refine Your Search

Topic

Search Results

Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

Numerical Investigation of Laminar Flame Speed of Gasoline - Ethanol/Air Mixtures with Varying Pressure, Temperature and Dilution

2010-04-12
2010-01-0620
A numerical analysis was performed to study the variation of the laminar burning speed of gasoline-ethanol blend, pressure, temperature and dilution using the one-dimensional premixed flame code CHEMKIN™. A semi-detailed validated chemical kinetic model (142 species and 672 reactions) for a gasoline surrogate fuel was used. The pure components in the surrogate fuel consist of n-heptane, isooctane and toluene. The ethanol mole fraction was varied from 0 to 85 percent, initial pressure from 4 to 8 bar, initial temperature from 300 to 600K, and the EGR dilution from 0 to 32% to represent the in-cylinder conditions of a spark-ignition engine. The laminar flame speed is found to increase with ethanol concentration and temperature but decrease with pressure and dilution.
Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
Journal Article

Review of CO2 Emissions and Technologies in the Road Transportation Sector

2010-04-12
2010-01-1276
The topic of CO₂ and fuel consumption reductions from vehicles is a very broad and complex issue, encompassing vehicle regulations, biofuel mandates, and a vast assortment of engine and vehicle technologies. This paper attempts to provide a high-level review of all these issues. Reducing fuel consumption appears not to be driven by the amount of hydrocarbon reserves, but by energy security and climate change issues. Regarding the latter, a plan was proposed by the United Nations for upwards of 80% CO₂ reductions from 1990 levels by 2050. Regulators are beginning to respond by requiring ~25% reductions in CO₂ emissions from light-duty vehicles by 2016 in major world markets, with more to come. The heavy-duty sector is poised to follow. Similarly, fuel policy is aimed at energy diversity (security) and climate change impacts. Emerging biofuel mandates require nominally 5-10% CO₂ life cycle emissions reductions by 2020.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Journal Article

Assessment of Gasoline Direct Injection Engine Cold Start Particulate Emission Sources

2017-03-28
2017-01-0795
The gasoline direct injection (GDI) engine particulate emission sources are assessed under cold start conditions: the fast idle and speed/load combinations representative of the 1st acceleration in the US FTP. The focus is on the accumulation mode particle number (PN) emission. The sources are non-fuel, combustion of the premixed charge, and liquid fuel film. The non-fuel emissions are measured by operating the engine with premixed methane/air or hydrogen/air. Then the PN level is substantially lower than what is obtained with normal GDI operation; thus non-fuel contribution to PN is small. When operating with stoichiometric premixed gasoline/air, the PN level is comparable to the non-fuel level; thus premixed-stoichiometric mixture combustion does not significantly generate particulates. For fuel rich premixed gasoline/air, PN increases dramatically when lambda is less than 0.7 to 0.8.
Journal Article

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

2011-04-12
2011-01-1305
The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under cold fast idle condition. For E10 to E85, PN increases modestly when the ECT is lowered. The distributions, however, are insensitive to the ethanol content of the fuel. The PN for E0 is substantially higher than the gasohol fuels at ECT below 20° C. The total PN values (obtained from integrating the PN distribution from 15 to 350 run) are approximately the same for all fuels (E0 to E85) when ECT is above 20° C. When ECT is decreased below 20° C, the total PN values for E10 to E85 increase modestly, and they are insensitive to the ethanol content. For E0, however, the total PN increases substantially. This sharp change in PN from E0 to E10 is confirmed by running the tests with E2.5 and E5. The midpoint of the transition occurs at approximately E5.
Journal Article

Onboard Gasoline Separation for Improved Vehicle Efficiency

2014-04-01
2014-01-1200
ExxonMobil, Corning and Toyota have collaborated on an Onboard Separation System (OBS) to improve gasoline engine efficiency and performance. OBS is a membrane based process that separates gasoline into higher and lower octane fractions, allowing optimal use of fuel components based on engine requirements. The novel polymer-ceramic composite monolith membrane has been demonstrated to be stable to E10 gasoline, while typically providing 20% yield of ∼100 RON product when using RUL 92 RON gasoline. The OBS system makes use of wasted exhaust energy to effect the fuel separation and provides a simple and reliable means for managing the separated fuels that has been demonstrated using several generations of dual fuel test vehicles. Potential applications include downsizing to increase fuel economy by ∼10% while maintaining performance, and with turbocharging to improve knock resistance.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio.

2011-04-12
2011-01-0341
A numerical simulation of autoignition of gasoline-ethanol/air mixtures has been performed using the closed homogeneous reactor model in CHEMKIN® to compute the dependence of autoignition time with ethanol concentration, pressure, temperature, dilution, and equivalence ratio. A semi-detailed validated chemical kinetic model with 142 species and 672 reactions for a gasoline surrogate fuel with ethanol has been used. The pure components in the surrogate fuel consisted of n-heptane, isooctane and toluene. The ethanol volume fraction is varied between 0 to 85%, initial pressure is varied between 20 to 60 bar, initial temperature is varied between 800 to 1200K, and the dilution is varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a spark-ignition engine. The ignition time is taken to be the point where the rate of change of temperature with respect to time is the largest (temperature inflection point criteria).
Technical Paper

Using Mass Spectrometry to Detect Ethanol and Acetaldehyde Emissions from a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline Blends

2011-04-12
2011-01-1159
Ethanol and acetaldehyde emissions from a direct ignition spark ignition were measured using mass spectrometry. Previous methods focused on eliminating or minimizing interference from exhaust species with identical atomic mass and fragment ions created in ionization process. This paper describes a new technique which exploits the fragment ions from ethanol and acetaldehyde. A survey of mass spectra of all major species of exhaust gas was conducted. It was found that ethanol contributes most ions in mass number 31 and that no other gas species produces ions at this mass number. Acetaldehyde detection suffers more interference. Nevertheless, it was estimated that detection at mass number 43 is possible with 10% error from 2-methylbutane. This new technique was validated in an engine experiment. By running the engine with pure gasoline and E85, the validity of the technique can be checked.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Autoignition of Alcohols and Ethers in a Rapid Compression Machine

1993-10-01
932755
The autoignition characteristics of methanol, ethanol and MTBE (methyl tert-butyl ether) have been investigated in a rapid compression machine at pressures in the range 20-40 atm and temperatures within 750-1000 K. All three oxygenated fuels tested show higher autoignition temperatures than paraffins, a trend consistent with the high octane number of these fuels. The autoignition delay time for methanol was slightly lower than predicted values using reported reaction mechanisms. However, the experimental and measured values for the activation energy are in very good agreement around 44 kcal/mol. The measured activation energy for ethanol autoignition is in good agreement with previous shock tube results (31 kcal/mol), although ignition times predicted by the shock tube correlation are a factor of three lower than the measured values. The measured activation energy for MTBE, 41.4 kcal/mol, was significantly higher than the value previously observed in shock tubes (28.1 kcal/mol).
Technical Paper

Flame Kernel Development in a Methanol Fueled Engine

1993-10-01
932649
The combustion behavior in a modem 4-valve engine using a broad range of methanol/gasoline fuel mixtures was studied. The initial flame development was examined by using a spark plug fiber optics probe. Approximately, the kernel expansion speed, Sg, is relatively unchanged from M0 to M40; jumps by ∼30% from M40 to M60; and then remains roughly constant from M60 to M100. Statistics of the IMEP indicate that at a lean idle condition the combustion rate and robustness correlate with Sg: a higher value of Sg gives better combustion. Thus M60-M100 fuels give better idle combustion behavior than the M0-M40 fuels.
Technical Paper

Chemical Kinetic Modeling of the Oxidation of Unburned Hydrocarbons

1992-10-01
922235
The chemistry of unburned hydrocarbon oxidation in SI engine exhaust was modeled as a function of temperature and concentration of unburned gas for lean and rich mixtures. Detailed chemical kinetic mechanisms were used to model isothermal reactions of unburned fuel/air mixture in an environment of burned gases at atmospheric pressure. Simulations were performed using five pure fuels (methane, ethane, propane, n-butane and toluene) for which chemical kinetic mechanisms and steady state hydrocarbon (HC) emissions data were available. A correlation is seen between reaction rates and HC emissions for different fuels. Calculated relative amounts of intermediate oxidation products are shown to be consistent with experimental measurements.
Technical Paper

Auto-Oil Program Phase II Heavy Hydrocarbon Study: Analysis of Engine-Out Hydrocarbon Emissions Data

1994-10-01
941966
The engine-out (EO) total and speciated hydrocarbon emissions data from the Auto-Oil Program Phase II Heavy Hydrocarbon Study had been analyzed. The methodology was to first investigate the stabilized EO emissions (Bag 2) of a specific vehicle (Vehicle 04B, a 1989 Model Year Ford Taurus); then the vehicle-to-vehicle differences in Bag2 emissions were considered. Finally, the differences in the Bag2 and the starting/warm-up EO emissions (Bag1) were examined. The speciated emissions may be interpreted as a “feed-through” part due to the unreacted fuel species, and an “offset” part due to the decomposition products. The significant non-fuel emitted species were methane and the olefins. The HC emissions for vehicles with different total emissions were similar in species composition. For both the total and speciated emissions, there was no substantial difference between the Bag1 and Bag2 values for Vehicle 04B.
Technical Paper

Novel Experiment on In-Cylinder Desorption of Fuel from the Oil Layer

1994-10-01
941963
A technique has been developed to measure the desorption and subsequent oxidation of fuel in the oil layer by spiking the oil with liquid fuel and firing the engine on gaseous fuel or motoring with air. Experiments suggest that fuel desorption is not diffusion limited above 50 °C and indicated that approximately two to four percent of the cylinder oil layer is fresh oil from the sump. The increase in hydrocarbon emissions is of the order of 100 ppmC1 per 1% liquid fuel introduced into the fresh oil in a methane fired engine at mid-speed and light load conditions. Calculations indicate that fuel desorbing from oil is much more likely to produce hydrocarbon emissions than fuel emerging from crevices.
Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

1995-07-01
951630
The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Fuel Effects on Throttle Transients in PFI Spark Ignition Engines

1997-05-01
971613
The fuel effects on throttle transients in PFI spark ignition engines were assessed through experiments with simultaneous step change of the throttle position from part load to WOT and increment of the injected fuel amount. The test matrix consisted of various gasoline/methanol blends from pure gasoline to pure methanol, coolant temperatures at 40C (for cold engine condition) and 80C (for warm engine), and different levels of fuel enrichment at the WOT condition. The x-τ model was used to interpret the engine GIMEP response in the transient. Using the model, a procedure was developed to calculate the parameters of the transient from the data. These parameters were systematically regressed against the fuel distillation points, the increment in injected fuel mass in the transient, and the enthalpy required to evaporate the fuel increment as the explanatory variables.
X