Refine Your Search

Topic

Author

Search Results

Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Chevrolet Sequel: Reinventing the Automobile

2008-04-14
2008-01-0421
Sequel is the third vehicle in GM's Reinvention of the Automobile and is the first zero emissions passenger vehicle to drive more than 300 miles on public roads without refueling or recharging. It is purpose-built around the hydrogen storage and fuel cell systems and uses the skateboard principle introduced in the Autonomy vision concept and the Hy-wire proof-of-concept vehicles. Sequel's aluminum structure, Flexray controlled chassis-by-wire systems and AWD system comprising a single front electric motor and two rear wheel motors make it, perhaps, the most technically advanced automobile ever built. The paper describes the vehicle's design and performance characteristics.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Technical Paper

Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods

1991-02-01
910208
Since interior noise has a strong effect on vehicle salability, it is particularly important to be able to estimate noise levels accurately by means of simulation at the design stage. The use of sensitivity analysis makes it easy to determine how the analytical model should be modified or the structure optimized for the purpose of reducting vibration and noise of the structural-acoustic systems. The present work focused on a structural-acoustic coupling problem. As the coefficient matrices of a coupled structural-acoustic system are not symmetrical, the conventional orthogonality conditions obtained in structural dynamics generally do not hold true for the coupled system. To overcome this problem, the orthogonality and normalization conditions of a coupled system were derived by us. In this paper, our sensitivity analysis methods are applied to an interior noise problem of a cabin model.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Improvement of Engine Sound Quality Through a New Flywheel System Flexiby Mounted to the Crankshaft

1990-02-01
900391
Engines that not only produce less noise but also provide good sound quality have been in increasing demand recently. Discomforting noise can sometimes be heard, however, during acceleration as the engine reaches higher levels of power and speed. This paper presents the results of a study into the bending vibration of the crankshaft-flywheel system, which clarify the mechanism producing discomforting noise during acceleration. Based on that study, a flexible flywheel has been developed which effectively reduces crankshaft bending vibration that is closely related to the frequency range of the discomforting noise. As a result, acceleration sound quality is greatly improved.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Stability Analysis of Solid Axle, Torque Arm Suspension Vehicles under Heavy Acceleration and Braking Events

2008-04-14
2008-01-1144
Power-hop is a self-excited and potential locally unstable torsional vibration of a vehicle's driveline, caused by stick and slip of the tire. It is especially prevalent in high-powered cars and trucks, under heavy acceleration. Torque arms have been used to reduce power-hop for many solid axle suspension vehicles, mostly trucks and old rear wheel drive sports cars. It has long been known that the shortest torque arm easily reduces power-hop, but will increase hop under braking (braking-hop). The fundamental mechanism of torque arm effects on solid axle suspension vehicles, however, has not yet been fully explained. This study explains the stability of solid axle, torque arm suspension vehicles under heavy acceleration and braking. Analytical techniques utilize conventional linear analysis and a non-linear coupling force in a 4 degree of freedom dynamic model.
Technical Paper

Noise Detection Technology Development for Car Cabin

2008-04-14
2008-01-0272
Recently, it has been very important to reduce the noise, especially the Squeak and Rattle noise, for improving customer appeal of passenger vehicles. The Squeak and Rattle noise occurring inside the car cabin during vehicle operation is an especially large problem. This paper describes a newly developed measurement technology that uses the developed signal processing using the Beam-forming method and vibration sensor to identify the Squeak and Rattle noise sources, making it possible to determine effective countermeasures quickly. This new technology is used to identify all Squeak and Rattle noises at a time among many different noises, for example Wind noise, Engine noise and Road noise occurring during vehicle operation, and is expected to shorten substantially the time needed for noise analysis and contribute to quality improvements.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

Prediction of Seat Vibration with a Seated Human Subject Using a Substructure Synthesis Method

2004-03-08
2004-01-0371
A seat vibration prediction technique using a substructure synthesis method was developed for use in ride comfort evaluations. The human body was modeled as a vibration transfer matrix using the mean apparent mass of human subjects, based on data measured in advance. Seat vibration characteristics were measured with rigid masses on the seat. The measured data and vibration transfer matrix of the human body were synthesized using a substructure synthesis method, to predict vibration of the seat cushion and backrest in an occupant-loaded condition without actually using human subjects. Results showed that seat vibration predicted with this method was very similar to, and more repeatable than, that obtained experimentally with human subjects.
Technical Paper

Experimental Investigation of the Flow Around a Generic SUV

2004-03-08
2004-01-0228
The results of an experimental investigation of the flow in the near wake of a generic Sport Utility Vehicle (SUV) model are presented. The main goals of the study are to gain a better understanding of the external aerodynamics of SUVs, and to obtain a comprehensive experimental database that can be used as a benchmark to validate math-based CFD simulations for external aerodynamics. Data obtained in this study include the instantaneous and mean pressures, as well as mean velocities and turbulent quantities at various locations in the near wake. Mean pressure coefficients on the base of the SUV model vary from −0.23 to −0.1. The spectrum of the pressure coefficient fluctuation at the base of the model has a weak peak at a Strouhal number of 0.07. PIV measurements show a complex three-dimensional recirculation region behind the model of length approximately 1.2 times the width of the model.
Technical Paper

Roll-Down Process Development for Transmission Garage Shift Quality

2001-04-30
2001-01-1500
A roll down methodology has been developed to predict the driver's seat track fore-aft acceleration response using measured half shaft torque time histories and an analytically predicted vehicle sensitivity function suitable for transverse front wheel drive powertrains. The predicted vehicle sensitivity function (a frequency response function) relates the transmission torque applied to the drive axles to the seat track fore-aft acceleration. An experimental procedure was developed to measure the in-situ vehicle sensitivity function. The experimental data was used to correlate the analytical model. The testing results have shown that in the frequency range of the “garage shift” that the vehicle body can be represented as a rigid body. A Nastran model utilizing a rigid body representation of the body and powertrain is used to predict the vehicle response to the torque transient.
Technical Paper

Integrating Test and Analytical Methods for the Quantification and Identification of Manual Transmission Driveline Clunk

2001-04-30
2001-01-1502
Driveline clunk is a phenomenon that can adversely affect customer perception of vehicle quality. Clunk is created by the impact of two driveline components as they oscillate in response to a torque disturbance in the driveline system. This disturbance is typically initiated by a driver controlled engine torque variation, most severely through a throttle or clutch manipulation. This torque variation excites a torsional response from the driveline, manifested by a variety of mechanisms such as resonances of various shafts, housings and axles, clutch oscillations, and gear impacts. Because automotive drivelines are complex systems composed of many rotating components, difficulty arises in identifying the impacts that cause clunk and evaluating the significant parameters that can positively affect these collisions. This paper will describe the application of analysis and test methods in the investigation of clunk in a rear wheel drive, manual transmission vehicle.
Technical Paper

Minimization of Error for Enforced Motion in FEM

2001-04-30
2001-01-1409
Several methods are currently used to enforce motion in different types of noise and vibration models. Experimentally based FRF models often use a matrix inversion technique to enforce motion. In finite element models, the large mass method is one that is very commonly used. A literature review has shown few guidelines for determining the size of these large masses. In this paper, the relationship between the matrix inversion technique and the large mass method is derived. From this relationship, conditions necessary for these large mass FEM models to converge to the same answers as the matrix inversion technique are derived. These conditions are then used to develop a criterion for determining a smallest possible large mass. Results from a simple model are presented to demonstrate the criterion.
X