Refine Your Search

Topic

Author

Search Results

Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Technical Paper

Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods

1991-02-01
910208
Since interior noise has a strong effect on vehicle salability, it is particularly important to be able to estimate noise levels accurately by means of simulation at the design stage. The use of sensitivity analysis makes it easy to determine how the analytical model should be modified or the structure optimized for the purpose of reducting vibration and noise of the structural-acoustic systems. The present work focused on a structural-acoustic coupling problem. As the coefficient matrices of a coupled structural-acoustic system are not symmetrical, the conventional orthogonality conditions obtained in structural dynamics generally do not hold true for the coupled system. To overcome this problem, the orthogonality and normalization conditions of a coupled system were derived by us. In this paper, our sensitivity analysis methods are applied to an interior noise problem of a cabin model.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Improvement of Engine Sound Quality Through a New Flywheel System Flexiby Mounted to the Crankshaft

1990-02-01
900391
Engines that not only produce less noise but also provide good sound quality have been in increasing demand recently. Discomforting noise can sometimes be heard, however, during acceleration as the engine reaches higher levels of power and speed. This paper presents the results of a study into the bending vibration of the crankshaft-flywheel system, which clarify the mechanism producing discomforting noise during acceleration. Based on that study, a flexible flywheel has been developed which effectively reduces crankshaft bending vibration that is closely related to the frequency range of the discomforting noise. As a result, acceleration sound quality is greatly improved.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Noise Detection Technology Development for Car Cabin

2008-04-14
2008-01-0272
Recently, it has been very important to reduce the noise, especially the Squeak and Rattle noise, for improving customer appeal of passenger vehicles. The Squeak and Rattle noise occurring inside the car cabin during vehicle operation is an especially large problem. This paper describes a newly developed measurement technology that uses the developed signal processing using the Beam-forming method and vibration sensor to identify the Squeak and Rattle noise sources, making it possible to determine effective countermeasures quickly. This new technology is used to identify all Squeak and Rattle noises at a time among many different noises, for example Wind noise, Engine noise and Road noise occurring during vehicle operation, and is expected to shorten substantially the time needed for noise analysis and contribute to quality improvements.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

Prediction of Seat Vibration with a Seated Human Subject Using a Substructure Synthesis Method

2004-03-08
2004-01-0371
A seat vibration prediction technique using a substructure synthesis method was developed for use in ride comfort evaluations. The human body was modeled as a vibration transfer matrix using the mean apparent mass of human subjects, based on data measured in advance. Seat vibration characteristics were measured with rigid masses on the seat. The measured data and vibration transfer matrix of the human body were synthesized using a substructure synthesis method, to predict vibration of the seat cushion and backrest in an occupant-loaded condition without actually using human subjects. Results showed that seat vibration predicted with this method was very similar to, and more repeatable than, that obtained experimentally with human subjects.
Technical Paper

Experimental Investigation of the Flow Around a Generic SUV

2004-03-08
2004-01-0228
The results of an experimental investigation of the flow in the near wake of a generic Sport Utility Vehicle (SUV) model are presented. The main goals of the study are to gain a better understanding of the external aerodynamics of SUVs, and to obtain a comprehensive experimental database that can be used as a benchmark to validate math-based CFD simulations for external aerodynamics. Data obtained in this study include the instantaneous and mean pressures, as well as mean velocities and turbulent quantities at various locations in the near wake. Mean pressure coefficients on the base of the SUV model vary from −0.23 to −0.1. The spectrum of the pressure coefficient fluctuation at the base of the model has a weak peak at a Strouhal number of 0.07. PIV measurements show a complex three-dimensional recirculation region behind the model of length approximately 1.2 times the width of the model.
Technical Paper

Minimization of Error for Enforced Motion in FEM

2001-04-30
2001-01-1409
Several methods are currently used to enforce motion in different types of noise and vibration models. Experimentally based FRF models often use a matrix inversion technique to enforce motion. In finite element models, the large mass method is one that is very commonly used. A literature review has shown few guidelines for determining the size of these large masses. In this paper, the relationship between the matrix inversion technique and the large mass method is derived. From this relationship, conditions necessary for these large mass FEM models to converge to the same answers as the matrix inversion technique are derived. These conditions are then used to develop a criterion for determining a smallest possible large mass. Results from a simple model are presented to demonstrate the criterion.
Technical Paper

Assessment of a Vehicle Concept Finite-Element Model for Predicting Structural Vibration

2001-04-30
2001-01-1402
A vehicle concept finite-element model is experimentally assessed for predicting structural vibration to 50 Hz. The vehicle concept model represents the body structure with a coarse mesh of plate and beam elements, while the suspension and powertrain are modeled with a coarse mesh of rigid-links, beams, and lumped mass, damping, and stiffness elements. Comparisons are made between the predicted and measured frequency-response-functions (FRFs) and modes of (a) the body-in-white, (b) the trimmed body, and (c) the full vehicle. For the full vehicle, the comparisons are with a comprehensive set of measured FRFs from 63 tests of nominally identical vehicles that demonstrate the vehicle-to-vehicle variability of the measured FRF response.
Technical Paper

Application of Elastomeric Components for Noise and Vibration Isolation in the Automotive Industry

2001-04-30
2001-01-1447
Elastomeric isolators are used in a variety of different applications to reduce noise and vibration. To use isolators effectively requires the product design and development engineer to satisfy multiple objectives, which typically include packaging restrictions, environmental criteria, limitations on motion control, load requirements, and minimum fatigue life, in addition to vibration isolation performance. An understanding of elastomeric material properties and the methods used to characterize elastomeric component behavior is necessary to achieve desired performance. Typical design criteria and functional objectives for various isolator applications, including powertrain mounts, suspension control arm bushings, shock absorber bushings, exhaust hangers, flexible couplings, cradle mounts, body mounts and vibration dampers are also discussed.
Technical Paper

Mechanical Mobility Relationship to the Dynamic Properties of the Structure-Borne Vibration Path within the Power Train and Vehicle

2003-05-05
2003-01-1601
The structure-borne vibration paths within the power train and the vehicle are complicated and have been studied for years. This complication is a result of multiple attachment locations, and directions that exhibit flexural resonance in both the source-side and response-side of the path. To aid understanding in discussion of the dynamic properties of an individual vibration path, simplified mechanical mobility models are employed. These models are typically more simplified by assigning classical elemental properties to the individual components represented in the model. An analysis was performed to understand the significance of more “real-like” component mobility properties on system response and isolation, consistent with the conversational mathematical interpretation. Components within the vibration path are modeled as multiple lumped-parameter elements.
Technical Paper

Vibration Characteristics of Cardboard Inserts in Shells

2003-05-05
2003-01-1489
A study has been conducted to determine the noise and vibration effect of inserting a cardboard liner into a thin, circular cross-sectioned, cylindrical shell. The relevance of such a study is to improve the understanding of the effects when a cardboard liner is used in a propeller shaft for noise and vibration control purposes. It is found from the study that the liner adds significant modal stiffness, while an increase in modal mass is also observed for a particular shell type of mode. Further, the study has shown that the additional modal damping provided by the liner is not appropriately modeled by Coulomb friction damping, a damping model often intuitively associated with cardboard materials. Rather, the damping is best modeled as proportional viscous damping.
Technical Paper

Vehicle Panel Vibro-Acoustic Behavior and Damping

2003-05-05
2003-01-1406
Damping treatments are widely used in passenger vehicles, but the knowledge of damping treatments is often fragmentary in the industry. In this study, vibro-acoustics behavior of a set of vehicle floor and dash panels with various types of damping treatments was investigated. Sound transmission loss, sound radiation efficiency as well as damping loss factor were measured. The damping treatments ranged from laminated steel construction (thin viscoelastic layer) and doubler plate construction (thick viscoelastic layer) to less structural “bake-on” damping and self-adhesive aluminum foil-backed damping treatments. In addition, the bare vehicle panels were tested as a baseline and the fully carpeted floor panel was tested as a reference. The test data were then examined together with analytical modeling of some of the test configurations. As expected, the study found that damping treatments add more than damping. They also add mass and change body panel stiffness.
Technical Paper

Vibration Modeling and Correlation of Driveline Boom for TFWD/AWD Crossover Vehicles

2003-05-05
2003-01-1495
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline boom test for the transverse engine with all wheel drive configuration on a front-wheel drive base (TFWD/AWD). Driveline boom caused by engine firing frequency that excites the bending mode of the propeller shaft becomes a noise and vibration issue for the design of TFWD/AWD driveline. The major source of vibrations and noise under the investigation in this paper is the dominant 3rd order engine torque pulse disturbance that excites the bending of the propeller shaft, the bending of the powertrain and possible the bending of the rear halfshaft. All other excitation sources in this powertrain for a 60° V6 engine with a pushrod type valvetrain are assessed and NVH issues are also considered in this transient dynamic model.
X