Refine Your Search

Topic

Search Results

Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency. Presenter Xianke Lin
Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Technical Paper

Real Time Energy Management Control Strategies for an Electrically Supercharged Gasoline Hybrid Vehicle

2020-04-14
2020-01-1009
The high level of electric power available on a Hybrid Electric Vehicle (HEV) enables the introduction of electrical auxiliaries in addition or in substitution to the ones currently available on a conventional powertrain. Among these auxiliaries, electric Superchargers (eSC) for the improvement of the vehicle performance or electrically heated catalysts for the reduction of the light-off time of the after-treatment may dramatically affect the Energy Management System (EMS) of an HEV. Moreover, since these devices are only fluid-dynamically, but not mechanically, linked to the powertrain, they are traditionally neglected in the optimization of the powersplit between internal combustion engine and electric machines by the EMS. The aim of the current work is the development of an EMS that is able to consider in real time the overall electric energy consumption of the entire powertrain.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-04-03
2018-01-0377
This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Technical Paper

Assessing the Windage Tray Blockage Effect on Aeration in the Oil Sump

2007-10-29
2007-01-4109
The windage tray effect on aeration in the engine sump was assessed by replacing much of the windage tray materials with wire meshes of various blockages. The mesh was to prevent direct impact of the oil drops spinning off the crank shaft onto the sump oil, and simultaneously, to provide sufficient drainage so that there was no significant build up of windage tray oil film that would interact with these droplets. Aeration at the oil pump inlet was measured by X-ray absorption in a production V-6 SI engine motoring at 2000 to 6000 rpm. Within experimental uncertainty, these windage tray changes had no effect on aeration. Thus activities in the sump such as the interaction of the oil drops spun from the crank shaft with the sump oil or with the windage tray, and the agitation of the sump oil by the crank case gas, were not major contributors to aeration at the pump inlet.
Technical Paper

Gerotor Lubricating Oil Pump for IC Engines

1998-10-19
982689
This paper documents an extensive study aimed at a better understanding of the peculiarities and performance of crankshaft mounted gerotor pumps for IC engines lubrication. At different extents, the modelling, simulation and testing of a specific unit are all considered. More emphasis, at the modelling phase, is dedicated to the physical and mathematical description of the flow losses mechanisms; the often intricate aspects of kinematics being deliberately left aside. The pressure relief valve is analysed at a considerable extent as is the modelling of the working fluid, a typically aerated subsystem in such applications. Simulation is grounded on AMESim, a relatively novel tool in the fluid power domain, that proves effective and compliant with user deeds and objectives. Testing, at steady-state conditions, forms the basis for the pro!gressive tuning of the simulation model and provides significant insight into this type of volumetric pump.
Technical Paper

Energy Consumption in ICE Lubricating Gear Pumps

2010-10-25
2010-01-2146
Scope of this work is the analysis of the energy consumed by lubricating gear pumps for automotive applications during a driving cycle. This paper presents the lumped parameter simulation model of gerotor lubricating pumps and the comparison between numerical outcomes and experimental results. The model evaluates the power required to drive the pump and the cumulative energy consumed in the driving cycle. The influence of temperature variations on leakage flows, viscous friction torque and lubricating circuit permeability is taken into account. The simulation model has been validated by means of a test rig for hydraulic pumps able to reproduce the typical speed, temperature and load profiles during a NEDC driving cycle. Experimental tests, performed on a crankshaft mounted pump for diesel engines, have confirmed a good matching with the simulation model predictions in terms of instantaneous quantities and overall energy consumption.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Displacement vs Flow Control in IC Engines Lubricating Pumps

2004-03-08
2004-01-1602
Scope of this work is to analyse potentials in terms of efficiency of two pump units belonging to two families: the first intervening on the maximum volume generated by variable volume chambers (e.g. a vane pump where eccentricity is varied), the second that changes the quantity of fluid being sucked or delivered (e.g. a gear pump with variable timing). In more detail the comparison will be established between a vane pump where displacement is varied through eccentricity and an internal gear pump of Gerotor type where flow rate is controlled through a rotating sector that alters the effective geometry of kidney ports. A detailed simulation of the two solutions brings to evidence the advantages of the first approach with respect to the second as confirmed by experimental investigations.
Technical Paper

Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication

2004-03-08
2004-01-1601
The paper presents geometric, kinematic and fluid-dynamic modelling of variable displacement vane pumps for low pressure applications in internal combustion engines lubrication. All these fundamental aspects are integrated in a simulation environment and form the core of a design tool leading to the assessment of performance, critical issues, related influences and possible solutions in a well grounded engineering support to decision.
Technical Paper

Multi-objective Optimization of a Multifunctional Structure through a MOGA and SOM based Methodology

2013-09-17
2013-01-2207
A Multi-Objective Optimization (MOO) problem concerning the thermal control problem of Multifunctional Structures (MFSs) is here addressed. In particular the use of Multi-Objective algorithms from an optimization tool and Self-Organizing Maps (SOM) is proposed for the identification of the optimal topological distribution of the heating components for a multifunctional test panel, the Advanced Bread Board (ABB). MFSs are components that conduct many functions within a single piece of hardware, shading the clearly defined boundaries that identify traditional subsystems. Generally speaking, MFSs have already proved to be a disrupting technology, especially in aeronautics and space application fields. The case study exploited in this paper refers to a demonstrator breadboard called ABB. ABB belongs to a particular subset of an extensive family of MFS, that is, of thermo-structural panels with distributed electronics and a health monitoring network.
Technical Paper

Effects of Different Geometries of the Cylinder Head on the Combustion Characteristics of a VVA Gasoline Engine

2013-09-08
2013-24-0057
Two different modifications of the baseline cylinder head configuration have been designed and experimentally tested on a MultiAir turbocharged gasoline engine, in order to address the issue of the poor in-cylinder turbulence levels which are typical of the Early-Intake-Valve-Closing (EIVC) strategies which are adopted in Variable Valve Actuation systems at part load to reduce pumping losses. The first layout promotes turbulence by increasing the tumble motion at low valve lifts, while the second one allows the addition of a swirl vortex to the main tumble structure. The aim for both designs was to achieve a proper flame propagation speed at both part and full load. The experimental activity was initially focused on the part load analysis under high dilution of the mixture with internal EGR, which can allow significant further reductions in terms of pumping losses but, on the other hand, tends to adversely affect combustion stability and to increase cycle-to-cycle variations.
Technical Paper

Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle

2013-04-08
2013-01-0964
Given the growing concern for environmental issues, the automotive industry is working more deeply on the development of innovative technologies that reduce gas emissions and fuel consumption. Many car manufacturers have identified hybrid electric vehicles (HEV) and fuel cell vehicles as the most promising solutions alternatives. IDRApegasus is a fuel cell hydrogen vehicle developed at the Politecnico of Turin. It participated at the Shell Eco-marathon Europe in Rotterdam (Netherlands) from 17-19 May 2012, a competition for low energy consumption vehicles and also an educational project that joins the value of sustainable development with a vehicle that will use the smallest amount of fuel and produce the lowest emissions possible.
Technical Paper

Performance and Emissions of a Turbocharged Spark Ignition Engine Fuelled with CNG and CNG/Hydrogen Blends

2013-04-08
2013-01-0866
An experimental investigation was performed on a turbocharged spark-ignition 4-cylinder production engine fuelled with natural gas and with two blends of natural gas and hydrogen (15% and 25% in volume of H₂). The engine was purposely designed to give optimal performance when running on CNG. The first part of the experimental campaign was carried out at MBT timing under stoichiometric conditions: load sweeps at constant engine speed and speed sweeps at constant load were performed. Afterwards, spark advance sweeps and relative air/fuel ratio sweeps were acquired at constant engine speed and load. The three fuels were compared in terms of performance (fuel conversion efficiency, brake specific fuel consumption, brake specific energy consumption and indicated mean effective pressure) and brake specific emissions (THC, NOx, CO).
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

Effects of Timing and Odd/Even Number of Teeth on Noise Generation of Gerotor Lubricating Pumps for IC Engines

2000-09-11
2000-01-2630
The paper presents experimental and theoretical investigations on a shaft mounted gerotor lubricating pump aimed at reducing radiated noise at high engine speed. Effects of noise generation identified as main sources are the fluid borne noise (FBN) that originates in unsteady flow and related pressure fluctuations and structure borne noise (SBN) as a result of pressure transients occurring internally, which cause vibrations of the pump case. To clarify the onset of large delivery pressure fluctuations detected at high pump speed (in excess of 4000 rpm), and validate simulation results (AMESim environment), experimental and theoretical studies have been performed.
Technical Paper

Modelling and Simulation of Gerotor Gearing in Lubricating Oil Pumps

1999-03-01
1999-01-0626
The paper presents geometric and kinematic aspects that constitute a premise to the modelling and simulation of gerotor lubricating oil pumps. With reference to a commercial oil pump two different modelling approaches of the pumping elements are addressed: the classical integral-derivative approach and the new derivative-integral approach. The latter, based on volumes swept by vector rays, is easier to implement and requires less computer time at equal accuracy. Two approaches to modelling are also detailed that feature different reticulations of the pump and consequently involve a different number of ordinary differential equations (ODE). Depending on the extent and detail of expected informations, either 4 or N+2 ODE must be solved, N being the number of variable volume chambers in the pump. Finally, numerical results of the simulation code, developed in the AMESim environment, have been compared with experimental results presented elsewhere [4].
X