Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Analysis of the Optimal Operating Strategy of a P24-Hybrid for Different Electric Power Distributions in Charge-Depleting and Charge-Sustaining Operation

2021-09-05
2021-24-0108
In order to adhere with future automotive legislation and incentives, the electric range of plug-in hybrids has steadily increased. At the same time, the installed electric power has risen as well leading to future hybrid vehicles with an electric power share of more than half of overall system power and hybrid configurations with at least two electrical machines come into focus. The concept of adding a separate electrical axle to a P2-hybrid - a so called P24-hybrid, is of special interest. The system complexity of a such a system increases significantly as the number of possible system states increases. Thus, this paper analyzes the efficiencies and benefits of the different system states within the fuel-optimal operating strategy derived by global optimization. By varying the electrical power distribution between the two axles, the impact on fuel efficiency and the changes within the operating strategy are investigated.
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

Analytical Methodology to Derive a Rule-Based Energy Management System Enabling Fuel-Optimal Operation for a Series Hybrid

2020-09-15
2020-01-2257
Due to the continuous electrification of vehicles, the variety of different hybrid topologies is expected to increase in the future. As the calibration of real-time capable energy management systems (EMS) is still challenging, a development framework for the EMS that is independent of the hybrid topology would simplify the overall development process of hybrid vehicles. In this paper an analytical methodology, which is used to derive a fuel-optimal, rule-based EMS for parallel hybrids, is transferred to a series topology. It is shown that the fundamental correlations can be applied universally to both parallel and series configurations. This enables the possibility to develop a real-time capable, rule-based controller for a series HEV based on maps that ensures a fuel-optimal operation. These maps provide the optimal power threshold for the activation of the auxiliary power unit and the optimal power output dependent on the driver’s power request.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Journal Article

Objective Evaluation of Steering Rack Force Behaviour and Identification of Feedback Information

2016-09-02
2016-01-9112
Electric power steering systems (EPS) are characterized by high inertia and therefore by a considerably damped transmission behaviour. While this is desirable for comfort-oriented designs, EPS do not provide enough feedback of the driving conditions, especially for drivers with a sporty driving style. The systematic actuation of the electric motor of an EPS makes it possible to specifically increment the intensity of the response. In this context, the road-sided induced forces of the tie rod and the steering rack force provide all the information for the steering system’s response. Former concepts differentiate between use and disturbance information by defining frequency ranges. Since these ranges overlap strongly, this differentiation does not segment distinctively. The presented article describes a method to identify useful information in the feedback path of the steering system depending on the driving situation.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Technical Paper

Contribution to the Force Transmission Behavior of Commercial Vehicle Tires

1991-11-01
912692
Tires of modern commercial vehicles must meet a specific requirement profile, containing the economic aspects, ride comfort and driving safety, as well. These three primary criteria are discussed in this paper, whereby emphasis is placed on the force transmission behavior of commercial vehicle tires regarded as a variable directly associated to driving safety. At the same time, the influence of distinct parameters such as wheel load, road speed, tire inflation pressure, tread depth and coefficient of adhesion between tire and road on the lateral and braking force behavior is illustrated using steady state and dynamic measurements. They were carried out on real roads using a specially prepared mobile tire dynamometer, but on an indoor drum-type tire test stand, as well. In addition to the above mentioned parameter variations the differences of the results on account of the test method are analysed.
Technical Paper

Model Release Process using Standardized Error Metrics for Validation of X-in-the-Loop Simulation Models

2021-09-21
2021-01-1148
The current automotive market is dynamic, leading to complex functionalities being incorporated into the control software of various components like engine, gearbox, battery, E-motor etc. This results in utilization of virtual environments for software testing to reduce the development time. The virtual platforms under the category X-in-the-Loop (XiL) e.g. Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) use simulated models to achieve a desired test goal. These component models must be rigorously validated to ensure the quality of XiL-Testing. Thus, it is essential to define a model release process that maintains model quality irrespective of the modeling approach used and the user. One of the challenges is to choose an appropriate Error Metric (EM) that sets criteria for model release. This paper proposes a combination of Theil’s Inequality Coefficient (TIC) and Unscaled Mean Bounded Relative Absolute Error (UMBRAE) as the EM.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Technical Paper

Realizing Future Trends in Diesel Engine Development

1997-08-06
972686
Volkswagen is the first automobile manufacturer to supply a passenger car with a direct fuel injection diesel engine to the US market, starting 1996. To meet the stringent US exhaust gas legislation the very successful European 1.9 liter TDI engine has been further developed for the 1996 and 1997 Passat. This TD1 incorporates a number of innovations in advanced diesel technology. Emissions-reducing innovations include: reduced crevice volume higher injection pressures upgraded injection management integrated EGR manifold system EGR cooling diesel catalytic converter This TDI engine configuration is also to be offered in the 1997 Golf and Jetta class and the new Passat in model year 1998. Over the coming years the TDI engine concept will be further optimized by utilizing variations of the above innovations.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

The Mercedes-Benz 5-Speed Automatic Transmission Targets and Comparison of Concepts

1990-09-01
901759
Since the introduction of the 4-speed automatic transmissions W4A040 in 1979 and W4A020 in 1981, more than 50% of Mercedes-Benz cars have been equipped with automatic transmissions. These transmissions have undergone continuous development since their introduction. Due to engine/transmission management, the kick-down shift points are electronically influenced, the shift comfort is improved partially by ignition timing manipulation. During the warm-up phase the shift points are raised via output signals from the electronic engine system to improve exhaust gas emissions. In this paper considerations are explained which resulted in supplementing the proven four-speed transmission with a five-speed transmission.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Optimum Diesel Fuel for Future Clean Diesel Engines

2007-01-23
2007-01-0035
Over the next decades to come, fossil fuel powered Internal Combustion Engines (ICE) will still constitute the major powertrains for land transport. Therefore, their impact on the global and local pollution and on the use of natural resources should be minimized. To this end, an extensive fundamental and practical study was performed to evaluate the potential benefits of simultaneously co-optimizing the system fuel-and-engine using diesel as an example. It will be clearly shown that the still unused co-optimizing of the system fuel-and-engine (including advanced exhaust after-treatment) as a single entity is a must for enabling cleaner future road transport by cleaner fuels since there are large, still unexploited potentials for improvements in road fuels which will provide major reductions in pollutant emissions both in vehicles already in the field and even more so in future dedicated vehicles.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

The New Diesel Engine in the New Beetle

1998-08-11
981950
With the introduction of the New Beetle, Volkswagen is offering the next generation of the 1.9l TDI engine. Several evolutionary changes have been made to the TDI concept to further improve its emissions, efficiency and performance. Emissions performance is improved with increased fuel injection pressure, optimized fuel injectors, calibration modifications, EGR cooling and reduced crevice volume in the combustion chamber. Efficiency is improved with new oil pump, vacuum pump and water pump drive systems and the elimination of an auxiliary driveshaft. Performance and efficiency is improved with the addition of a variable geometry turbocharger, which increases torque at lower engine speeds while preserving performance at higher engine speeds. This paper describes the many enhancements found in this latest generation TDI and gives a brief lookout to the future trends in diesel engine development such as a high pressure injection system with unit injectors.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
X