Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Interval Finite Element Analysis of Structural Dynamic Problems

2015-04-14
2015-01-0484
We analyze the frequency response of structural dynamic systems with uncertainties in load and material properties. We introduce uncertainties in the system as interval numbers, and use Interval Finite Element Method (IFEM). Overestimation due to dependency is reduced using a new decomposition for the stiffness and mass matrices, as well as for the nodal equivalent load. In addition, primary and derived quantities are simultaneously obtained by means of Lagrangian multipliers that are introduced in the total energy of the system. The obtained interval equations are solved by means of a new variant of the iterative enclosure method resulting in guaranteed enclosures of relevant quantities. Several numerical examples show the accuracy and efficiency of the new formulation.
Technical Paper

Innovative Concepts for Planetary EVA Access

2007-07-09
2007-01-3245
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
Technical Paper

Integrated Use of Data Mining and Statistical Analysis Methods to Analyze Air Traffic Delays

2007-09-17
2007-01-3836
Linear regression is the primary data analysis method used in the development of air traffic delay models. When the data being studied does indeed have an underlying linear model, this approach would produce the best-fitting model as expected. However, it has been argued by ATM researchers [Wieland2005, Evans2004] that the underlying delay models are primarily non-linear. Furthermore, the delays being modeled often depend not only on the observable independent variables being studied but also on other variables not being considered. The traditional regression approach alone may not be best suited to study these type of problems. In this paper, we propose an alternate methodology based on partitioning the data using statistical and decision tree learning methods. We then show the utility of this model in a variety of different ATM modeling problems.
Technical Paper

Lunar Base Life Support Failure Analysis and Simulation

2009-07-12
2009-01-2482
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
Technical Paper

Planning Dynamic Simulation of Space Life Support

2009-07-12
2009-01-2493
Dynamic modeling and simulation of recycling space life support is necessary to determine processing rates, buffer sizes, controls, and other aspects of systems design. A common approach is to develop an overall inclusive model that reflects nominal system operation. A full dynamic simulation of space life support represents many system elements in an inclusive model, but it cannot and should not include everything possible. A model is a simplified, partial, mathematical representation of reality. Including unnecessary elements makes the model complex, costly, and confusing. Models are built to help understand a system and to make predictions and decisions about it. The best and most useful models are developed to answer specific important questions. There are many possible questions about life support design and performance. Different questions are best answered by different models. Static spreadsheet analysis is a good starting point.
Technical Paper

Finite Element Simulation and Experimental Validation of V-Ribbed Belt Tracking

2001-03-05
2001-01-0661
A general three-dimensional finite element model was built to simulate the tracking conditions inherent in automotive front-end accessory drives, specifically, serpentine V-ribbed belt drives. Commercial finite element code ABAQUS was used for the simulation. The analysis is based on a hyper-elastic material model for the belt, and includes the effect of the reinforced cords and fibers in the rubber compound. The model can be used to study different parameters of the belt drive system such as rib number, pulley misalignment, drive wrap angle and drive speed. Experiments were used to validate the finite element model. Belt misalignment force of two, four and six ribbed belts under different misalignment conditions was obtained from experiment and compared with the results from the finite element model. Good correlation between these results brings confidence to the finite element model. Finally, typical FEA simulation results for a six-ribbed belt are presented.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

1993-04-01
931122
Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Technical Paper

100,000 Miles of Fueling 5.9L Cummins Engines with 100% Biodiesel

1996-10-01
962233
Two Cummins B5.9L engines were fueled with 100% biodiesel in excess of 48 months by the Agricultural Engineering Department at the University of Missouri-Columbia. The engines used to power Dodge pickups. The engine lubricating oil was sampled at 1000 mile intervals for analysis. Statistical analysis of the engine lubricating oil indicated that the wear metal levels in the lubricating oil were normal. A reduction in power was noted when the engines were tested using a chassis dynamometer. The 1991 pickup has been driven 110,451 km and the 1992 pickup has been driven approximately 177,022 km. The pickups averaged 6.9 km/L. Engine fuel efficiency and material compatibility issues are addressed in the paper.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

New Approaches to Multidisciplinary Synthesis: An Aero-Structures-Control Application Using Statistical Techniques

1996-10-01
965501
An evolving aircraft synthesis simulation environment which offers improvements to existing methods at multiple levels of a design process is described in this paper. As design databases become obsolete due to the introduction of new technologies and classes of vehicles and as sophisticated analysis codes are often too computationally expensive for iterative applications, the design engineer may find a lack of usable information needed for decision making. Within the environment developed in this paper, rapid sensitivity analysis is possible through a unique representation of the relationship between fundamental design variables and system objectives. The combined use of the Design of Experiments and Response Surface techniques provides the ability to form this design relationship among system variables and target values, which is termed design-oriented in nature.
Technical Paper

Fuselage and Wing Weight of Transport Aircraft

1996-10-01
965583
A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft.
Technical Paper

Split Ring Resonator-based Metamaterial with Total Bandgap for Reducing NVH in Electric Vehicles

2024-04-09
2024-01-2348
We propose a novel Split Ring Resonator (SRR) metamaterial capable of achieving a total (or complete) bandgap in the material’s band structure, thereby reflecting airborne and structure-borne noise in a targeted frequency range. Electric Vehicles (EVs) experience tonal excitation arising from switching frequencies associated with motors and inverters, which can significantly affect occupant perception of vehicle quality. Recently proposed metamaterial designs reflect airborne noise and structure-borne transverse waves over a band of frequencies, but do not address structure-borne longitudinal waves in the same band. To achieve isolation of acoustic, transverse, and longitudinal elastic waves associated with tonal frequencies, we propose a metamaterial super cell with transverse and longitudinal resonant frequencies falling in a total bandgap. We calculate the resonant frequencies and corresponding mode shapes using finite element (FE) modal analysis.
X