Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Experimental Studies on Viscoelasticity of Film Materials in Laminated Glass Sheets

2015-04-14
2015-01-0709
Polyvinyl butyral (PVB) film and SentryGlas® Plus (SGP) film have been widely used in automotive windshield and architecture curtain serving as protective interlayer materials. Viscoelasticity is the unique property of such film materials, which can contribute to improving impact resistance and energy absorbing characteristics of laminated glass. In this study, the uniaxial tensile creep and stress relaxation tests are conducted to investigate the viscoelasticity of PVB and SGP films used in laminated glass. Firstly, tensile creep and stress relaxation tests of PVB film (0.76mm) and SGP film with three thickness (0.89mm, 1.14mm and 1.52mm) are conducted using Instron universal testing machine to obtain creep and stress relaxation curves. Afterwards, both viscoelastic models (Burgers model, Maxwell-Weichert model) and empirical equations (Findley power law, Kohlrausch equation) are applied to simulate the creep and stress relaxation results.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Incompressible Flow Computations Around Vehicle Bodies Using Unstructured Hybrid Grids

2002-03-04
2002-01-0598
A hybrid unstructured Navier-Stokes method is presented for the simulation of the incompressible turbulent flows around vehicle bodies. The hybrid grid system is composed of a structured or semistructured grid for the near-wall viscous region, and an unstructured grid for the remainder of the computational domain. By using prismatic cells, the number of cells in the boundary-layer region becomes approximately one-third of the tetrahedral grid. And the laminated grid rather than the tetrahedral grid is more suitable in the boundary-layer region for accurately computing the viscous terms. The incompressible Navier-Stokes equations are solved on the hybrid grid by a cell-vertex, central differencing finite volume method. The numerical accuracy of the present method is discussed by comparing with the experimental data for the cases of flows around a car model at different ground clearances.
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

Effect of the Pre-Chamber Orifice Geometry on Ignition and Flame Propagation with a Natural Gas Spark Plug

2017-10-08
2017-01-2338
Natural gas is one of the promising alternative fuels due to the low cost, worldwide availability, high knock resistance and low carbon content. Ignition quality is a key factor influencing the combustion performance in natural gas engines. In this study, the effect of pre-chamber geometry on the ignition process and flame propagation was studied under varied initial mixture temperatures and equivalence ratios. The pre-chambers with orifices in different shapes (circular and slit) were investigated. Schlieren method was adopted to acquire the flame propagation. The results show that under the same cross-section area, the slit pre-chamber can accelerate the flame propagation in the early stages. In the most of the cases, the penetration length of the flame jet and flame area development are higher in the early stages of combustion.
Technical Paper

Numerical Investigation of Blockage Effects on Heavy Trucks in Full Scale Test Conditions

2016-04-05
2016-01-1607
The effect of blockage due to the presence of the wind tunnel walls has been known since the early days of wind tunnel testing. Today there are several blockage correction methods available for correcting the measured aerodynamic drag. Due to the shape of the test object, test conditions and wind tunnel dimensions the effect on the flow may be different for two cab variants. This will result in a difference in the drag delta between so-called open-road conditions and the wind tunnel. This makes it more difficult to evaluate the performance of two different test objects when they are both tested in a wind tunnel and simulated in CFD. A numerical study where two different cab shapes were compared in both open road condition, and in a digital wind tunnel environment was performed.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Small Scale Research in Automobile Aerodynamics

1966-02-01
660384
This paper describes a three component strain gage balance designed to measure aerodynamic forces exerted on small automobile models when subjected to turbulence in an experimental wind tunnel. The instrument is described and the details of obtaining values with it are fully explained. Although tests were conducted on these models at quarter-scale Reynolds number, results agree closely with similar tests on larger models. The balance makes practical some unusual preliminary investigations before developing full-scale prototypes.
Technical Paper

Parametric Analysis of Resistance Spot Welding Lobe Curve

1988-02-01
880278
A linearized lumped parameter heat balance model was developed and is discussed for the general case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material properties, geometry of electrodes and work piece, weld time and current, and electrical and thermal contact characteristics. These are then related to heat dissipation in the electrodes and the work piece. The results indicate that the ratio of thermal conductivity and heat capacity to electrical resistivity is a characteristic number which is representative of the ease of spot weldability of a given material. The increases in thermal conductivity and heat capacity of the sheet metal increase the lobe width while increases in electrical resistivity decrease the lobe width. Inconsistencies in the weldability of thin sheets and the wider lobe width at long welding times can both be explained by the heat dissipation characteristics.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

1999-10-25
1999-01-3578
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Technical Paper

Experimental Analysis on the ‘Exact’ Cremer Impedance in Rectangular Ducts

2018-06-13
2018-01-1523
Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester’s work is that it simplified the analysis on the effect of flow by only considering high frequencies or the ‘well cut-on’ modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest, with the vehicle intake and exhaust system included. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the ‘exact’ solution of Cremer impedance for circular waveguides, which reveals an appreciable difference between the exact and classic solution in the low frequency range. Consequently, the exact solution can lead to a much higher low-frequency attenuation level.
Technical Paper

Torque Vectoring Control Strategies for Distributed Electric Drive Formula SAE Racing Car

2021-04-06
2021-01-0373
This paper presents a two-layer torque vectoring control strategy for the Formula SAE racing car of Tsinghua University to enhance steering response, lateral stability and track performance. Firstly, the dynamic model of the existing FSAE car is built as parameters of tires, suspensions, motors and aerodynamics are measured and identified. Secondly, this paper develops a two-layer torque vectoring strategy, the upper-layer direct yaw moment (DYC) controller and the lower-layer torque distribution controller are developed in Simulink. The upper-layer sliding mode control DYC controller calculates the target additional yaw moment according to the target yaw rate based on the two-degree-of-freedom (2DOF) reference model, and the sideslip angle is constrained as well.
Journal Article

Study on Energy Loss due to Cornering Resistance in Over-Actuated Vehicles using Optimal Control

2017-03-28
2017-01-1568
As vehicles become electrified and more intelligent in terms of sensing, actuation and processing; a number of interesting possibilities arise in controlling vehicle dynamics and driving behavior. Over-actuation with in- wheel motors, all wheel steering and active camber is one such possibility, which facilitate the control strategies that push boundaries in energy consumption and safety. Optimal control can be used to investigate the best combinations of control inputs to an over-actuated system. This paper shows how an optimal control problem can be formulated and solved for an over-actuated vehicle case, and highlights the translation of this optimal solution to a real-world scenario, enabling intelligent means to improve vehicle efficiency. This paper gives an insight into Dynamic Programming (DP) as an offline optimal control method that guarantees the global optimum.
Journal Article

Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation

2009-06-15
2009-01-1907
The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency).
X