Refine Your Search

Search Results

Viewing 1 to 15 of 15
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
Nissan has released our original HEV system in Japan on November 2010, and will release it in US market on March 2011. The 1 motor 2 clutch parallel type using conventional 7 speed automatic transmission has been employed without torque converter and with a manganese cathode and laminated type Li-ion Battery. This system is well recognized its higher efficiency but lower weight and cost, however, has never realized due to technical difficulties of smoothness. At this session, performance achievements and hinged breakthrough technologies will be presented. Presenter Tetsuya Takahashi, Nissan Motor Co., Ltd.
Technical Paper

A Loss Analysis Design Approach to Improving Torque Converter Performance

1998-02-23
981100
This paper describes the relationship between the design parameters used to define the geometry of an automotive torque converter and the resultant efficiency in relation to the internal flow characteristics. Taking the turbine bias angle and the contraction ratio of the pump flow passage as specific examples, the effects of each design parameter on the internal flow characteristics and the occurrence of loss were analyzed. A three-dimensional viscous flow analysis code was used in the numerical computation procedure and a method developed independently by the authors was used in the loss analysis. The flow near the wall was visualized experimentally using a technique resembling the so-called oil film method. The visualized results showed good qualitative agreement with the numerical analysis results.
Technical Paper

Performance of a CVT Fluid for High Torque Transmitting Belt-CVTs

1998-10-19
982675
A new belt-drive continuously variable Transmission (B-CVT) was introduced into the Japanese market in September 1997 by Nissan Motor Co., Ltd. It transmits a maximum torque of 196 Nm and represents a major breakthrough of the torque limit transmitted by B-CVTs, thus opening a new epoch for the automatic transmission. The major features of the CVT are transmission of high torque between a steel belt and pulleys, electronic control of high hydraulic-pressure to pulleys and a torque converter with an electronically controlled lockup clutch engaging at low vehicle speeds. A CVT fluid formulated for this CVT was designed to optimize these features and this paper describes the performance of the CVT fluid in lab-scale tests and an endurance test of the CVT unit. In order to realize high torque transmission between a steel belt and pulleys, high friction between metal/metal contacts is required with normal wear.
Technical Paper

Development of a Metal Belt-Drive CVT Incorporating a Torque Converter for Use with 2-Liter Class Engines

1998-02-23
980823
Technologies for reducing fuel consumption have attracted strong interest in recent years amid the heightened concern about global environmental protection. At Nissan, we have been focusing on the development of electronically controlled continuously variable transmissions (CVTs) since the early 1980s as a promising technology for reducing fuel consumption. That work has led to the commercialization of the world's first belt-drive CVT that is suitable for application up to 2.0-liter class passenger cars. The practical use of CVTs has so far been limited to cars mounted with small displacement engines of the 1.6-liter class. The belt-drive CVT described here incorporates new technology for transmitting greater torque and also has product attributes suitable for use on upscale passenger cars, making it applicable to 2.0-liter class models.
Technical Paper

A New Five-Speed Nissan Automatic Transmission for Passenger Cars

1990-02-01
900551
An electronically controlled five-speed automatic transmission has been developed for use in new 2-liter models. This high-performance gearbox is the world's first five-speed automatic transmission for passenger car use to be equipped with a torque converter. It is designed with an ultra-wide range and close ratio gearing and incorporates a host of outstanding technologies to provide excellent performance and driveability. This paper describes the major features and performance of this new automatic transmission and some of the studies undertaken concerning multiplication of gear steps.
Technical Paper

A New Approach to Developing a More Efficient Torque Converter Stator

1990-09-01
901765
A flatter design is becoming increasingly important for reducing torque converter axial size and weight. The conventional stator design method, in which the blade profile is geometrically determined and flow analysis of the profile may give some valuable information, is no longer sufficient for achieving efficient flow turning in the short axial length of flat torque converters. Here, after a brief review of the conventional design approach, an inverse design method is introduced, which yields a blade profile solution for a prescribed favorable velocity distribution along the blade. The performance improvement with this procedure has been demonstrated experimentally.
Technical Paper

Electronically Controlled Torque Split System, for 4WD Vehicles

1986-10-01
861349
The 4WD system is ultimately believed to be the best system for every situation. However, it does not display satisfactory cornering performance when the vehicle is being accelerated. Recognising this fact, we analyzed the influence of the 4WD fore/aft torque split ratio on cornering performance and found that an optimum torque split ratio exists but varies according to the friction coefficient of the road surface and the vehicle driving force. Based on this analysis, we developed a new transfer system for 4WD vehicles, which is able to adjust the fore/aft torque split ratio by means of an electronically controlled multi-plate clutch. Applying this new transfer system to a test vehicle, it was found to be effective in obtaining desired cornering performance. In this paper, we mainly present information derived from the analysis and concerning the electronically controlled torque split system.
Technical Paper

Dynamic-Shock-Absorber-Effect of Engine Mounting System on the Power-Train Vibration

1984-02-01
840255
In this paper, a method which uses the engine mounting system to suppress vibration in the power train is examined. The vibration in the power train can be reduced by tuning the engine mounting system. It has been seen through the results of this analysis that vibration can be reduced by an effect, different from dynamic damper effect, which is known in this paper as the “dynamic shock absorber effect”. Comparing it with the dynamic damper effect, this paper explains the dynamic shock absorber and gives examples of its application in enhancing driveability and reducing clutch judder vibration.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Development and Testing of CVT Fluid for Nissan Toroidal CVT

1999-10-25
1999-01-3613
Nissan has developed a practical and available toroidal continuously variable transmission (T-CVT) for passenger vehicles for the first time in the world. This CVT is applicable to engines having an output of torque larger than 400 N-m and makes it possible to use a lock-up clutch at low vehicle speed, resulting in marked improvements in drivability and fuel economy. The authors have developed the T-CVT fluid, which is in this application, having excellent traction coefficient and sufficient capacity as the transmission fluid. This paper mainly describes the traction coefficient measurement procedure and the performance of the newly developed fluid.
Technical Paper

Development of a Slip Speed Control System for a Lock-Up Clutch (Part II)

2008-04-14
2008-01-0001
A new control system for the coasting range was designed with the μ-synthesis technique to achieve robust stability, based on the slip speed control system that was reported in our previous paper.(1) The results of driving tests conducted with the fuel supply cut off while coasting confirm that the new control system is able to avoid engine stall even under sudden hard braking on a low friction road (μ<0.1) at a vehicle speed of 20 km/h and a turbine speed of 1000 rpm. The system also allows the lock-up clutch to slip stably at a certain target slip speed at anytime while coasting and achieves robust performance against characteristic variations of the lock-up mechanism. This slip speed control system thus makes it possible to extend the fuel cut-off range to a lower engine speed of 800 rpm, down from 950 rpm, thereby improving fuel economy by about 1%.
Technical Paper

Development of a Slip Control System for a Lock-Up Clutch

2004-03-08
2004-01-1227
Lock-up operation of an automatic transmission is known as one good method of improving fuel economy. However, locking up the transmission at low vehicle speeds can often cause undesirable vibration or booming noise. Slip control of the lock-up clutch can resolve these problems, but the speed difference of the lock-up clutch needs to be controlled at a certain value. This control system has to overcome large changes in the parameters of the lock-up system at low vehicle speeds and also changes with regard to the speed ratio in a continuously variable transmission (CVT). In this study, this complex non-linear system has been modeled as a first-order linear parameter varying (LPV) system. A robust control algorithm was applied taking various disturbances into account to design a new slip lock-up control system.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Development of a Slip Speed Control System for a Lockup Clutch (Part III)

2009-04-20
2009-01-0955
It is difficult for a conventional robust control algorithm to assure the performance of a slip speed control system, because the plant (lockup system) includes the nonlinear characteristics of the hydraulic system and large changes in the parameters of the slip model at low vehicle speed. The purpose of this study is to reduce the fuel consumption and improve the drivability of vehicles at takeoff by using a slip speed control system. Providing a large feedback gain is effective in reducing the influence of nonlinearity. However, since the operating parameters of the lockup clutch change depending on the driving conditions, that is not possible. A feedback compensator with a gain-scheduled H∞ control method was used in this study to solve these problems. The effectiveness of the slip speed control system was demonstrated in driving tests. Using this control system, the slip speed can be controlled with high accuracy, thereby reducing unnecessary revving of the engine.
X