Refine Your Search

Topic

Author

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Technical Paper

Impact of EV Charging on Power System with High Penetration of EVs: Simulation and Quantitative Analysis Based on Real World Usage Data

2020-04-14
2020-01-0531
The adoption of electric vehicles (EVs) has been announced worldwide with the aim of reducing CO2 emissions. However, a significant increase in electricity demand by EVs might impact the stable operation of the existing power grid. Meanwhile, EV charging is acceptable to most users if it is completed by the time of the next driving event. From the viewpoint of power grid operators, flexibility for shifting the timing of EV charging would be advantageous, including making effective use of renewable energy. In this work, an EV model and simulation tool were developed to make clear how the total charging demand of all EVs in use will be influenced by future EV specifications (e.g., charge power) and installation of charging infrastructure. Among the most influential factors, EV charging behavior according to use cases and regional characteristics were statistically analyzed based on the real-world usage data of over 14, 000 EVs and incorporated in the simulation tool.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Practical Challenges on Yokohama Mobility “Project ZERO” - Towards next generation mobility for low-carbon future

2010-10-19
2010-01-2346
Reduction of greenhouse gases or CO2 is the global issue for sustainability. City of Yokohama, where 3.7 million people live, established the Yokohama Climate Change Action Policy “CO-DO30”, aiming to cut down on greenhouse gas emissions by over 30% per person by 2025, and by over 60% by 2050. “CO-DO30” includes 7 areas of approaches, such as Living, Businesses, Buildings, Transportation, Energies, Urban and Green, and City Hall. To achieve this challenging target, practical and effective action on transportation area is definitely required, because it emits 20% of total greenhouse gas emission in the city. In 2008, City of Yokohama and Nissan jointly started YOKOHAMA Mobility “Project ZERO” (YMPZ), a 5-year project aimed at realizing “Eco-Model City, Yokohama”.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle

2011-04-12
2011-01-0350
This paper describes the motor and inverter system developed for the Nissan LEAF that has been specifically designed as a mass-produced electric vehicle. The system produces maximum torque of 280 Nm and maximum power of 80 kW. The motor achieves a small size, high power, and high efficiency as a result of adopting the following in-house technologies. The magnetic circuit design was optimized for an interior magnet synchronous motor to attain the maximum performance figures noted here. The material technologies of the rotor and the stator facilitate high efficiency and the production technology achieves high density winding. The cooling mechanism is optimally designed for a mass-produced electric vehicle. The inverter incorporates the following original technologies and application-specific parts to obtain cost reductions combined with reliability improvements. The power module has an original structure with the power devices mounted directly on the busbars.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Development of an Electrically-Driven Intelligent Brake Unit

2011-04-12
2011-01-0572
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results
Technical Paper

Development of HMI and Telematics Systems for a Reliable and Attractive Electric Vehicle

2011-04-12
2011-01-0554
This paper describes the HMI, navigation and telematics systems developed specifically for the Nissan LEAF electric vehicle to dispel drivers' anxieties about operating an EV. Drivers of EVs will need to understand various new kinds of information about the vehicle's operational status that differ from conventional gasoline-engine vehicles. Additionally, owing to the current driving range of EVs and limited availability of charging stations, drivers will want to know acccurate the remaining driving range, amount of power and the latest information about charging station locations. It will also be important to ensure that people unfamiliar with EVs will be able to operate them easily as rental cars or in car-sharing systems without experiencing any inconvenience.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Development of a Performance Prediction Program for EVs Powered by Lithium-ion Batteries

1997-02-24
970239
The performance capabilities which hold the key to the acceptance of electric vehicles (EVs) includes range and acceleration. Range can be effectively extended by increasing the size of the batteries used, but it requires a trade-off with acceleration performance which deteriorates due to the increased weight. The FEV-II and Prairie Joy EV exhibited at the 1995 Tokyo Motor Show were equipped with high-performance lithium-ion batteries that achieve both high energy and power densities, to provide an excellent balance of range and acceleration. Futher more, the batteries exceptionally high charging efficiency enables them to accept regenerative energy effectively. This feature improves range, and also allows the battery state of charge (SOC) to be determined accurately. This characteristic was used to develop a highly accurate battery model which was incorporated in a simulation program for predicting EV performance.
Technical Paper

Development of a Lithium-ion Battery System for EVs

1997-02-24
970238
This paper presents a lightweight, high-performance Lithium-ion Battery System developed jointly by Nissan Motor Co. and Sony Corp. for electric vehicle (EV) use. Electric vehicles are generally powered by a battery pack consisting of numerous cells connected in a series. Management techniques to elicit the maximum performance of the battery pack are needed, including a function for monitoring individual cells to prevent them from over-discharging. Because of high cell voltage, lithium-ion batteries enable the number of cells in a battery pack to be greatly reduced compared with other types of battery systems. They also allow accurate detection of the battery State of Charge (SOC) based on the battery voltage. These characteristics are conducive to the application of battery pack management technology. These concepts provided the basis for the development of a Lithium-ion Battery System for EV application.
Technical Paper

Development of a Lithium-ion Battery System for HEVs

2000-03-06
2000-01-1057
This paper describes a high-power lithium-ion battery system that has been newly developed for application to hybrid electric vehicles (HEVs). The battery system was designed on the premise of an underfloor location so as to avoid sacrificing interior spaciousness while providing the power output and recharge performance required by the hybrid propulsion system. To meet these requirements, efforts were made to increase the specific power and to reduce the heat generation of the battery to previously unattained levels. As a result, exceptionally high specific power of 1,200 W/kg per cell, battery pack power of 25kW at 20% state of charge (SOC), and high charge/discharge efficiency of more than 95% in the urban driving schedule has been achieved. The battery pack is composed of two box-shaped modules designed with a low height in consideration of underfloor mountability.
Technical Paper

Development of the Nissan Fuel Cell Vehicle

2000-04-02
2000-01-1584
Nissan has recently developed and begun driving tests of a fuel cell vehicle equipped with a methanol reformer that produces hydrogen through the use of a catalyst to induce chemical reactions between methanol and water. With this onboard fuel cell system, only methanol in the form of a liquid fuel needs to be supplied, making the system highly practical as an automotive powertrain for near-future application. The Nissan Fuel Cell Vehicle (FCV) adopts a high-efficiency neodymium magnet synchronous traction motor combined with lithium-ion batteries that enable the vehicle to achieve optimum electric power by switching between a fuel cell-powered driving mode and a battery-powered driving mode. This presentation will cover the current status of the FCV development program and driving test results.
Technical Paper

A Motor-Drive System Design That Takes Into Account EV Characteristics

1999-03-01
1999-01-0739
This paper discusses various design factors that must be considered in achieving a practical motor-drive system for electric vehicles. When we design a motor-drive system for an electric vehicle, pursuit of high efficiency is required, and the system also has to have a good ease of use in practical situation. The following configuration is preferable for the realization of the vehicle that meets these requirements (1) A direct- coupled geartrain is used. (2) A permanent magnet synchronous motor is used as the traction motor. (3) The motor is inverter driven (battery operated) (4) A controller is needed to manage torque characteristics. When we design the motor-drive system using these configuration, we have to resolve various issues of the system concerning the vehicle and drive system performance fir practical use. By resolving these design issues, the practical performance of EVs can be improved and they can also make full use of the advantages of a motor-drive system.
Technical Paper

Study of a High-Power Lithium-Ion Battery for Parallel HEV Application

1999-03-01
1999-01-1155
Our studies of the lithium-ion battery system have shown considerably more power capability than some existing batteries. Based on these results, we have developed a lithium-ion battery for parallel hybrid electric vehicle (PHEV) application. This battery system provides around ten times the specific power of conventional batteries and also achieves high recharging performance and high charge/discharge efficiency. Evaluation results indicate that it is a highly promising energy source for PHEVs.
Technical Paper

Development of an Electric Motor for a Newly Developed Electric Vehicle

2014-04-01
2014-01-1879
This paper describes the development of the drive motor adopted on the newly developed 2013 Model Year (MY) electric vehicle (EV). Based on the 2011MY EV that was specifically designed and engineered for mass-production, the 2013MY powertrain integrates the electric motor, inverter and charging system into one unit in order to achieve downsizing and weight saving, unlike previous 2011 model which had these components segregated. In general, integration of all components into one unit causes deterioration of the noise and vibration performance of vehicles due to an increase in weight and the number of resonance parts. In order to overcome such problems associated with this integration, each component in the 2013 model has been optimized to reduce noise and vibration resulting in high degree of vehicle quietness.
X