Refine Your Search

Topic

Author

Search Results

Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

Improvement of Combustion Stability under Cold Ambient Condition by Mixture Control

2013-04-08
2013-01-1303
For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
Technical Paper

Development and Analysis of New Traction Control System with Rear Viscous LSD

1991-02-01
910700
Traction control systems (TCSs) serve to control brake pressure and engine torque, thereby reducing driving wheel spin for improved stability and handling. Systems are divided into two basic types by the brake control configuration. One type is a one-channel left-right common control system and the other is a two-channel individual control system. This paper presents an analysis of these two types of TCS configurations in terms of handling, acceleration, stability, yaw convergence and other performance parameters. The systems are compared with and without a limited-slip differential (LSD) under various road conditions, based on experimental data and computer simulations. As a result of this work, certain Nissan models are now equipped with a new Nissan Traction Control System with a rear viscous LSD (Nissan V-TCS), which provides both the advantages of a rear viscous LSD in a small slip region and a two-channel TCS in a large slip region.
Technical Paper

The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine

2007-10-29
2007-01-4004
Some automakers have been studying variable compression ratio (VCR) technology as one possible way of improving fuel economy. In previous studies, we have developed a VCR mechanism of a unique multiple-link configuration that achieves a piston stroke characterized by semi-sinusoidal oscillation and lower piston acceleration at top dead center than on conventional mechanisms. By controlling compression ratio with this multiple-link VCR mechanism so that it optimally matches any operating condition, the mechanism has demonstrated that both lower fuel consumption and higher output power are simultaneously possible. However, it has also been observed that fuel consumption does not reduce further once the compression ratio reached a certain level. This study focused on the fact that the piston-stroke characteristic obtained with the multiple-link mechanism is suitable to a longer stroke.
Technical Paper

Compact and Long-Stroke Multiple-Link VCR Engine Mechanism

2007-10-29
2007-01-3991
A multiple-link variable compression ratio (VCR) mechanism is suitable for a long-stroke engine by providing the following characteristics: (1) a nearly symmetric piston stroke and (2) an upper link that stays vertical around the time of the maximum combustion pressure. These two characteristics work to reduce force inputs to the piston. The maximum inertial force around top dead center is reduced by the effect of the first characteristic. The second characteristic is effective in reducing piston side thrust force and helps ease piston pin lubrication. Because of the combined effect of these characteristics, the piston skirt can be made smaller and the piston pin can be shortened. That makes it possible for the piston skirt and piston pin to move between the counterweights, resulting in a downward extension of the piston stroke. As a result, a longer-stroke engine mechanism can be achieved without making the cylinder block taller.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

1998-02-01
980149
This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

Development of a High-Pressure Fueling System for a Direct-Injection Gasoline Engine

1998-05-04
981458
A direct-injection gasoline engine that uses a stratified charge combustion process was developed by Nissan and released in the Japanese market toward the end of 1997. This new engine is based on Nissan's VQ engine, which enjoys a good reputation for its quick throttle response and low fuel consumption, and has been developed to accomplish the objectives of reducing fuel consumption by stratified charge combustion and securing high power output. The fuel injectors are connected by an arrangement of lightweight, small-diameter fuel lines that distribute fuel to each injector under high pressure. This system was adopted in order to reconcile the use of an aerodynamic straight intake port with the desired fuel injection position. The use of a casting net injector, which uniformly distributes the fuel spray above the piston, makes it possible to accomplish stratified charge combustion with a shallow-bowl piston.
Technical Paper

Prediction of Crank Pin Journal Temperature Based on the Oil Flow Rate

1998-05-04
981403
Improving the durability and reliability of crankshaft bearings has become an important issue for automotive engines recently because of conflicting demands for lower fuel consumption and higher power output. This study focused on the connecting rod big-end bearing which is subjected to harsher operating conditions on account of these requirements. It is known that the crank pin journal temperature is an indicator of big-end bearing seizure. Having a simple method for predicting the crank pin journal temperature with the required accuracy at the design stage is indispensable to efficient engine development. In this study, analyses were first conducted to determine the oil flow rate at the big-end bearing which is a major determinant of the crank pin journal temperature.
Technical Paper

Development of the Full Active Suspension by Nissan

1990-09-01
901747
Nissan has developed a hydraulic active suspension which uses an oil pump as its power source to produce hydraulic pressure that negates external forces acting on the vehicle. As a result, the suspension system is able to control vehicle movement freely and continuously. This control capability makes it possible to provide higher levels of ride comfort and vehicle dynamics than are obtainable with conventional suspension systems. The major features of the hydraulic system include: (1) active bouncing control using a skyhook damper, (2) a frequency-sensitive damping mechanism and (3) active control over roll, dive and squat.
Technical Paper

Development of a Slip Speed Control System for a Lock-Up Clutch (Part II)

2008-04-14
2008-01-0001
A new control system for the coasting range was designed with the μ-synthesis technique to achieve robust stability, based on the slip speed control system that was reported in our previous paper.(1) The results of driving tests conducted with the fuel supply cut off while coasting confirm that the new control system is able to avoid engine stall even under sudden hard braking on a low friction road (μ<0.1) at a vehicle speed of 20 km/h and a turbine speed of 1000 rpm. The system also allows the lock-up clutch to slip stably at a certain target slip speed at anytime while coasting and achieves robust performance against characteristic variations of the lock-up mechanism. This slip speed control system thus makes it possible to extend the fuel cut-off range to a lower engine speed of 800 rpm, down from 950 rpm, thereby improving fuel economy by about 1%.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

Development of a Slip Control System for a Lock-Up Clutch

2004-03-08
2004-01-1227
Lock-up operation of an automatic transmission is known as one good method of improving fuel economy. However, locking up the transmission at low vehicle speeds can often cause undesirable vibration or booming noise. Slip control of the lock-up clutch can resolve these problems, but the speed difference of the lock-up clutch needs to be controlled at a certain value. This control system has to overcome large changes in the parameters of the lock-up system at low vehicle speeds and also changes with regard to the speed ratio in a continuously variable transmission (CVT). In this study, this complex non-linear system has been modeled as a first-order linear parameter varying (LPV) system. A robust control algorithm was applied taking various disturbances into account to design a new slip lock-up control system.
Technical Paper

Study of Fuel Dilution in Direct-Injection and Multipoint Injection Gasoline Engines

2002-05-06
2002-01-1647
Fuel dilution is one of the phenomena requiring attention in direct-injection engines. This study examined the factors contributing to increased fuel dilution in direct-injection and conventional multipoint injection gasoline engines, focusing in particular on fuel dilution in the oil pan. The results showed that fuel dilution is affected by fuel consumption, fuel properties and oil/cooling water temperatures in multipoint injection engines. In addition to these factors, fuel injection timing is another factor that increases fuel dilution in direct-injection engines.
Technical Paper

Analysis of Rollover Restraint Performance With and Without Seat Belt Pretensioner at Vehicle Trip

2002-03-04
2002-01-0941
Eight rollover research tests were conducted using the 2001 Nissan Pathfinder with a modified FMVSS 208 dolly rollover test method where the driver and right front dummy restraint performance was analyzed. The rollover tests were initiated with the vehicle horizontal, not at a roll angle. After the vehicle translated laterally for a short distance, a trip mechanism was introduced to overturn the vehicle. Retractor, buckle, and latch plate performance in addition to the overall seat belt performance was analyzed and evaluated in the rollover test series. Retractor pretensioners were activated near the rollover trip in three of the tests to provide research data on its effects. Various dummy sizes were utilized. The test series experienced incomplete data collection and a portion of the analog data was not obtained. National Automotive Sampling System (NASS) data was also analyzed to quantify the characteristics of real world rollovers and demonstrated the benefits of restraint use.
Technical Paper

Improvement of Vehicle Dynamics Through Braking Force Distribution Control

1992-02-01
920645
The influence on vehicle dynamics of braking force distribution to four wheels has been analyzed by computer simulation and experimentation. The analytical results indicate that a suitable braking force distribution control method can improve handling and stability during braking. A new braking force distribution cintrol strategy,using a steering wheel angle feedforward function and a yaw velocity feedback function,is shown to improve vehicle dynamic behavior.
Technical Paper

Development of New 1.6Liter Four Cylinder Turbocharged Direct Injection Gasoline Engine with Intake and Exhaust Valve Timing Control System

2011-04-12
2011-01-0419
This paper describes a new 1.6-liter four-cylinder gasoline turbocharged engine with a direct injection gasoline (DIG) system and a twin continuously variable valve timing control (CVTC) system. Demands for higher environmental performance make it necessary to improve engine efficiency further. At the same time, improvement of power performance is important to enhance the appeal of vehicles and make them attractive to consumers. In order to meet these requirements, a 1.6-liter direct injection gasoline turbocharged engine has been developed. By using many friction reduction technologys, this engine achieves the high power performance of a 2.5-liter NA(Naturally Aspirated) gasoline engine and low fuel consumption comparable to that of a smaller displacement engine. In addition, this engine achieves low exhaust emission performance to comply with the US LEV2-ULEV and EU Euro5 emission requirements.
Technical Paper

HBMC (Hydraulic Body Motion Control System) for Production Vehicle Application

2011-04-12
2011-01-0563
In order to satisfy increasing customer demands on ride quality as well as expectations for off-road performance of sport-utility vehicles (SUVs), it is necessary to develop technologies which offer enhanced levels of both performances. For ride quality, it is important to minimize body roll angle during cornering, which is achieved by suppressing suspension travel, and also to reduce vertical motion during straight-ahead travel. While for off-road performance, it is necessary to allow a long suspension stroke to allow a high level of off-road traction by delivering driving force reliably to the surface. These two performance parameters require a tradeoff with respect to vehicle roll stiffness. To reconcile these conflicting performance requirements, for first time in the world we adopted for production vehicles the system which connects the four shock absorbers together.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
X