Refine Your Search

Topic

Author

Search Results

Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Journal Article

Improvement of Combustion Stability under Cold Ambient Condition by Mixture Control

2013-04-08
2013-01-1303
For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
Technical Paper

Application of CAE Technology to the Development of Plastic Automotive Components

1991-02-01
910877
The use of CAE software in developing plastic components has advanced rapidly in recent years. This progress has been supported by the development of practical analytical tools, based on the finite element and boundary element methods, and on the dramatic improvements seen in computer performance. Following the introduction of a flow analysis program in 1982, Nissan has developed and implemented advanced programs for use in developing plastic components and has integrated the programs into a unified in-house system. This system is being utilized at the design and manufacturing stages of interior and exterior trim parts and has produced concrete results in different phases of component development. Work is now proceeding on the development of a system that can simultaneously analyze both the component performance and the factors that need to be considered in the manufacturing process.
Technical Paper

A New CAD/CAM System for the Car Design Process

1991-02-01
910817
Sophisticated product designs enrich people's lives and social demands for creation of good designs are quite strong. In the automobile industry, good design quality is one of the principal factors for determining market competitiveness. In this situation where good design quality is required of every product, the authors have developed a CAD/CAM system which makes it possible to create good and accurate designs by translating designers' ideas directly and quickly into high quality CAD models, a capability that has long been desired. With this high performance system, freely formed curves and surfaces can be easily manipulated with a man-machine interface familiar to industrial designers accutomed to the conventional design process. The system also integrates photo-realistic rendering, stereography and NC milling machines for verifying differences between the realized shape and the image in the designer's mind.
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Aerodynamic Sensitivity Analysis of Tire Shape Factors

2020-04-14
2020-01-0669
It is well known that the wheels and tires account for approximately 25% of the overall aerodynamic drag of a vehicle. This is because the contribution of the tires to aerodynamic drag stems from not only aerodynamic drag itself directly caused by exposure to the main flow (tire CD), but also from aerodynamic drag indirectly caused by the interference between tire wakes and the upper body flow (body CD). In the literature, as far as the authors are aware, there have been no reports that have included the following all four aspects at once: (1) CD sensitivity to detailed tire shape factors; (2) CD sensitivity differences due to different vehicle body types; (3) CD sensitivity for each aerodynamic drag component, i.e., tire CD and body CD; (4) Flow structure and mechanism contributing to each aerodynamic drag component. The purpose of this study was to clarify CD sensitivity to tire shape factors for tire CD and body CD considering two different vehicle body types, sedan and SUV.
Technical Paper

New Design Support Approach CAP (Computer Aided Principle) and an Application to Structural Design for Vehicle Crash Safety

2007-08-05
2007-01-3718
The authors have proposed a new method to identify the important information which links to the basic principle of the design's physical behavior by using CAE technology, and this method was named as CAP (Computer-Aided Principle).This method can help the engineers to grasp the basic physical characteristic that governs the first-order behavior. In this study, the authors applied CAP to the simulations of the design of frontal crash phenomena, which are difficult to understand because of the problem of strong nonlinearity, and explored the possibilities for using CAP. The correlative physical parameters thus obtained can help designers to understand the essence of the phenomena involved.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

A Voxel-Based Approach to Structural Analysis That Includes Consideration of Contact Conditions

1998-02-01
980304
A voxel model, which consists of minute cubic cells called voxels to express the shape of an object, can now be generated automatically from CAD data. Moreover, advances in high-speed computational techniques have made it possible to perform a structural analysis using such a voxel model. This paper presents some high-speed computational techniques to realize the analysis in practice and a method to treat a contact condition on the jagged surface that characterizes a voxel model to further expand the scope of application.
Technical Paper

Evaluations of Physical Fatigue during Long-term Driving with a New Driving Posture

2007-04-16
2007-01-0348
In a previous study, we developed and validated a new driving posture focused on biomechanical loads for physical fatigue reduction in static long-term sitting. In this study, the posture was evaluated in dynamic long-term driving condition by qualitative and quantitative measurements. The results showed physical fatigue of the new posture was halved in comparison with the one of the conventional posture in same car by subjective evaluations. Physiological indices had same tendency with subjective evaluations. From the results, we extracted seven physiological indices as good measures of physical fatigue while driving. Therefore, fatigue reduction of the new posture was qualitatively validated by physiological measurements.
Technical Paper

An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety

2007-04-16
2007-01-0882
The Computer-Aided Principle (CAP) is applied in this study as an effective approach to the crashworthiness design of the vehicle front-end structure. With this method, correlative parameters are extracted in a parametric study by using a cluster analysis. The results can help engineers to understand the fundamental mechanisms of structural phenomena. A simulation example of an offset frontal crash against a deformable barrier (ODB) is presented to show the effectiveness of the proposed method.
Technical Paper

Effective Numerical Simulation Tool for Real-World Rollover Accidents by Combining PC-Crash and FEA

2007-04-16
2007-01-1773
With SUVs and minivans accounting for a larger share of the US market in the past decade, rollover accidents have drawn greater attention, leading to more active research from different perspectives. This ranges from investigations for elucidating the basic causes and mechanisms of rollover accidents to studies of more advanced occupant protection measures. As the phenomenon of a rollover accident is longer in duration than frontal, side or rear impacts, it is relatively difficult [1] to simulate such accidents for experimental verification and also for proper evaluation of occupant restraint system performance. In this work, we focused on the trip-over type, which occurs most frequently, and performed simulations to reproduce real-world rollover accidents by combining PC-Crash and FEA.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

1998-05-31
986165
Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

Development of a Prediction Method for Passenger Vehicle Aerodynamic Lift using CFD

2008-04-14
2008-01-0801
Increasing expectations for stability at high speed call for the improvement of cars' aerodynamic performance, in particular lift reduction. However, due to styling constraints, traditional spoilers must be avoided and replaced by other solutions like underfloor components. Flow simulation is expected to be a useful tool for lift prediction, but the conventional models used so far did not represent complex geometry details such as the engine compartment and underfloor, and accuracy was insufficient. In the present study, a full vehicle simulation model, including the engine compartment and underfloor details, was used. Other improvements were also made such as optimization of the computational grid and the setting of boundary conditions for reproducing wind tunnel experiments or actual driving, making it possible to predict lift variations due to vehicle geometry changes.
Technical Paper

Launch of ITS in Yokohama, Japan- Progress of an ITS Field Operational Test for Traffic Safety and Congestion -

2008-10-20
2008-21-0011
In order to reduce traffic accidents and ease traffic congestion utilizing ITS (Intelligent Transportation System), a large-scale FOT (Field Operational Test) involving 2,000 ordinary drivers was launched in October 2006 in the city of Yokohama in Kanagawa, Japan. The test is slated to continue through March 2009. Target applications include Intersection Collision Avoidance using V-I (Vehicle-to-Infrastructure) communication, ISA (Intelligent Speed Advisory) using digital maps in the vehicle navigation system, and the probe system, which provides detailed traffic information. In this paper, the progress of this FOT will be introduced.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

Development of a Brake-Operated Pre-Crash Seatbelt System and Performance Evaluation

2004-03-08
2004-01-0851
The brake-operated pre-crash seatbelt system retracts the seatbelt webbing by activating an electric motor attached to the seatbelt retractor. Detection of emergency braking is used as a trigger to activate the motor. Retracting the seatbelt helps to reduce an occupant's forward movement due to inertial force acting on the occupant's body during deceleration in braking. Addtionally, retraction of the seatbelt webbing also helps existing occupant restraint devices to work more effectively in a crash. The effectiveness of the pre-crash system was evaluated by considering two conditions combined. One involved the dynamic behavior of the vehicle and occupants prior to a crash. The other concerned the safety performance of the vehicle during the crash event. Experiments were conducted to measure the behavior of the vehicle and occupants under emergency braking prior to a crash.
X