Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Technology for Assembling Vehicle Endurance Reliability

1991-09-01
911924
The ways in which vehicles are used in the field are continually becoming more diverse. In order to provide the optimum solution with respect to performance and weight, it is necessary to be able to assure vehicle endurance reliability with a high degree of accuracy in relation to the manner of use in each market. This situation has increased the importance of accurately quantifying the ways in which vehicles are used in the field and of designing vehicles with sufficient endurance reliability to match the usage requirements. This report presents a “market model” by which the manner of usage in the field can be treated quantitatively using combinations of environmental factors that influence the road load, drive load and corrosion load, representing typical loads vehicles must withstand.
Technical Paper

Aerodynamic Sensitivity Analysis of Tire Shape Factors

2020-04-14
2020-01-0669
It is well known that the wheels and tires account for approximately 25% of the overall aerodynamic drag of a vehicle. This is because the contribution of the tires to aerodynamic drag stems from not only aerodynamic drag itself directly caused by exposure to the main flow (tire CD), but also from aerodynamic drag indirectly caused by the interference between tire wakes and the upper body flow (body CD). In the literature, as far as the authors are aware, there have been no reports that have included the following all four aspects at once: (1) CD sensitivity to detailed tire shape factors; (2) CD sensitivity differences due to different vehicle body types; (3) CD sensitivity for each aerodynamic drag component, i.e., tire CD and body CD; (4) Flow structure and mechanism contributing to each aerodynamic drag component. The purpose of this study was to clarify CD sensitivity to tire shape factors for tire CD and body CD considering two different vehicle body types, sedan and SUV.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of an Electric Concept Vehicle with a Super Quick Charging System

1992-02-01
920442
Recent environmental concerns such as atmospheric pollution and energy conservation have intensified the need to develop pollution-free, energy-efficient vehicles. One such solution is the electric automobile which draws its power from rechargeable batteries. There are few vehicles on the road today because present batteries can store very little energy compared with that of a tank of gasoline. To obtain adequate range, this concept vehicle adopts a new battery which can be recharged to 40% of capacity in six minutes. This super quick charging system makes it possible to recharge the batteries at an electric recharging station just as gasoline-powered vehicles are refilled at service stations. The electric concept vehicle also has improved aerodynamics, reduced rolling resistance and a lighter curb weight, which help to assure adequate range.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

Development of HMI and Telematics Systems for a Reliable and Attractive Electric Vehicle

2011-04-12
2011-01-0554
This paper describes the HMI, navigation and telematics systems developed specifically for the Nissan LEAF electric vehicle to dispel drivers' anxieties about operating an EV. Drivers of EVs will need to understand various new kinds of information about the vehicle's operational status that differ from conventional gasoline-engine vehicles. Additionally, owing to the current driving range of EVs and limited availability of charging stations, drivers will want to know acccurate the remaining driving range, amount of power and the latest information about charging station locations. It will also be important to ensure that people unfamiliar with EVs will be able to operate them easily as rental cars or in car-sharing systems without experiencing any inconvenience.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

A Method for Predicting Connecting Rod Bearings Reliability Based on Seizure and Wear Analysis

1988-02-01
880568
Maintaining reliability of the connecting rod bearing is a very important subject, and the following is a problem that needs to be overcome. Predicting reliability has generally depended on minimum oil film thickness (M.O.F.T), but recently, the engines of passenger cars which have greater power and speed potential than conventional ones are sometimes run beyond their M.O.F.T. limit (a degree of roughness around the crank shaft's axis.) In such a case, it is so difficult to predict reliability according to M.O.F.T., that we need a new index which directly shows seizure and wear. For this purpose, we found that the crank shaft pin temperature can be a key cause of seizure and wear according to an analysis of the relationship between its temperature and the seizure and wear caused intentionally. Using this method, we confirmed that the combination of bearing and crank shaft materials is very important for preventing seizure and wear.
Technical Paper

The Development of Second Generation Ceramic Turbocharger Rotor - Further Improvements in Reliability

1988-02-01
880702
Nissan has developed a second generation ceramic turbocharger rotor which provides greater reliability and higher performance than a conventional ceramic rotor. The new rotor is made of silicon nitride, which has demonstrated sufficient strength in vehicle applications. The bonding technique for joining the ceramic rotor to the metal shaft has been confirmed through experimentation to have sufficient reliability. The second generation rotor is featured by the low stress design and higher dynamic strength, and two factors contribute to its higher reliability. The rotor shape was optimized on the basis of results obtained in two analyses of particle impact resistance and applied combined stress. Test results show that the reliability of the second generation rotor have been substantially improved over those of the conventional rotor now being used on production vehicles.
Technical Paper

Development of Improved Metal-Supported Catalyst

1989-02-01
890188
A compact, high-performance and durable metal-supported catalyst has been developed by using the properties of the metal support effectively. The advantages of the metal-surpported catalyst against the ceramic-supported one are higher geometrical surface area, higher heat conductivity and thinner wall thickness. Higher geometlical surface area and higher heat conductivity lead to higher conversion efficiency after durability test and it allows reduction in catalyst volume. And the thinner wall thickness lowers gas flow resistance. But also, the metal-supported catalyst has the disadvantage of larger heat expansion and it requires special structure and material.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Positioning System with Vision Sensor for Automatic Arc Welding

1986-02-01
860607
This report describes an arc-welding robot system with a vision sensor which Nissan Motor Co., Ltd. has introduced to automate the arc welding line for truck frames. Developed in-house, this system is now in operation on the arc welding line for Nissan Truck frames at Nissan's Kyushu plant. In developing the system, primary emphasis was placed on assuring practicality and high reliability. Included among the prominent features of the system is the capability to detect the welding line of thin panels with a high degree of accuracy and to calculate corrections when needed. To assure the high speed and reliability needed for the production line, the robot and sensor are separated, and the vision sensors are placed at fixed positions. Detection of the welding line and transmission of data to the robots to correct their positions are completed just prior to welding, so as to avoid the effects of noise and the arc flash during welding.
Technical Paper

Development of a Small Pitch Silent Chain for a Single-Stage Cam Drive System

1999-03-01
1999-01-1226
In contrast to the conventional two-stage cam drive system with a 9.52- mm pitch roller chain, a newly developed silent chain with a 6.35-mm pitch has made it possible to achieve a single-stage system. One traditional drawback of silent chains has been wear elongation. In developing the new chain, reliability was substantially improved by identifying the factors causing wear elongation and their effects and also by optimizing the characteristics of the chain components. The application of this single-stage cam drive system to the new QG engine series has resulted in reduced chain noise, a more compact cylinder head and significant weight savings due to the smaller part count and other improvements.
Technical Paper

Development of a Wear Resistant Aluminum Alloy for Automotive Components

1999-03-01
1999-01-0350
Hypereutectic Al-Si alloy 390, containing large amounts of hard silicon particles, has mainly been used for wear-resistant alloy applications. In the case of hypereutectic Al-Si alloys, the primary silicon particle size and distribution must be controlled to obtain stable wear resistance. The service life of furnaces and molds is shortened by the high melting and casting temperatures required for controlling primary silicon. Furthermore, machinability is degraded by large primary silicon particles. To overcome these problems, a new wear-resistant Al-Si alloy has been developed which provides good castability and machinability. This alloy also has wear resistance and mechanical properties similar to those of the 390 alloy. Specifically, the problems regarding castability and machinability were solved by decreasing the silicon content of the 390 alloy, but that also reduced wear resistance.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Development of the Aerodynamics of the New Nissan Murano

2015-04-14
2015-01-1542
The new Murano was developed with special emphasis on improving aerodynamics in order to achieve fuel economy superior to that of competitor models. This paper describes the measures developed to attain a drag coefficient (CD) that is overwhelmingly lower than that of other similar models. Special attention was paid to optimizing the rear end shape so as to minimize rear end drag, which contributes markedly to the CD of sport utility vehicles (SUVs). A lower grille shutter was adopted from the early stage of the development process. When open, the shutter allows sufficient inward airflow to ensure satisfactory engine cooling; when closed, the blocked airflow is actively directed upward over the body. The final rear end shape was tuned so as to obtain the maximum aerodynamic benefit from this airflow. In addition, a large front spoiler was adopted to suppress airflow toward the underbody as much as possible.
X