Refine Your Search

Topic

Author

Search Results

Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Journal Article

Improvement of Combustion Stability under Cold Ambient Condition by Mixture Control

2013-04-08
2013-01-1303
For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

Development and Analysis of New Traction Control System with Rear Viscous LSD

1991-02-01
910700
Traction control systems (TCSs) serve to control brake pressure and engine torque, thereby reducing driving wheel spin for improved stability and handling. Systems are divided into two basic types by the brake control configuration. One type is a one-channel left-right common control system and the other is a two-channel individual control system. This paper presents an analysis of these two types of TCS configurations in terms of handling, acceleration, stability, yaw convergence and other performance parameters. The systems are compared with and without a limited-slip differential (LSD) under various road conditions, based on experimental data and computer simulations. As a result of this work, certain Nissan models are now equipped with a new Nissan Traction Control System with a rear viscous LSD (Nissan V-TCS), which provides both the advantages of a rear viscous LSD in a small slip region and a two-channel TCS in a large slip region.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Interactive Information Delivery Navigation System

1998-10-19
98C029
In the past few years, car navigation and cellular phone system are rapidly increased in Japan and vehicle information and communication system (VICS), the public traffic information service started in 1996, accelerates realization of ITS world. This rapid movement causes drivers to want more information on not only traffic jam but also other versatile items like parking availability, weather report and the latest news, etc. via cellular phone network. This paper describes the on-demand information service with the interactive human interface by operators and the development of the information center and the in-vehicle system to realize it.
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

1998-05-31
986165
Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

Research on a Brake Assist System with a Preview Function

2001-03-05
2001-01-0357
Traffic accidents in Japan claim some 10,000 precious lives every year, and there is seemingly no end to the problem. In an effort to overcome this situation, vehicle manufacturers have been pushing ahead with the development of a variety of advanced safety technologies. Joint public-private sector projects related to Intelligent Transport Systems (ITS) are also proceeding vigorously. Most accidents can be attributed to driver error in recognition, judgment or vehicle operation. This paper presents an analysis of driver behavior characteristics in emergency situations that lead to an accident, focusing in particular on operation of the brake pedal. Based on the insights gained so far, we have developed a Brake Assist System with a Preview Function (BAP) designed to prevent accidents by helping drivers with braking actions. Experimental results have confirmed that BAP is effective in reducing the impact speed and the frequency of accidents in emergency situations.
Technical Paper

Design of Lane-Keeping Control with Steering Torque Input for a Lane-Keeping Support System

2001-03-05
2001-01-0480
This paper describes the method used to design the basic control algorithm of a lane-keeping support system that is intended to assist the driver's steering action. Lane-keeping control has been designed with steering torque as the control input without providing a minor loop for the steering angle. This approach was taken in order to achieve an optimum balance of lane-keeping control, ease of steering intervention by the driver and robustness. The servo control system was designed on the basis of H2 control theory. Robustness against disturbances, vehicle nonlinearity and parameter variation was confirmed by μ - analysis. The results of computer simulations and driving tests have confirmed that the control system designed with this method provides the intended performance.
Technical Paper

A Study of a Safety Support System that Uses Information from the Road Infrastructure

2004-03-08
2004-01-0448
A safety support system that uses information received from the road infrastructure is being developed in a project sponsored by the Ministry of Land, Infrastructure and Transport. The purpose of this system is to reduce the number of accidents at intersections and on highways. The system is now being tested in an experimental vehicle. This paper describes what kind of information is helpful to drivers based on the experimental results.
Technical Paper

Evaluation of a Voice-Activated System Using a Driving Simulator

2004-03-08
2004-01-0232
On-board voice-interaction systems such as a voice-activated system or a text -to-speech (TTS) system enable drivers to operate devices or to obtain desired information without relying on visual processes. These systems are aimed to reduce the driver's workload, but there is a concern about their possible effect on mental distraction. This paper describes driving simulator tests that were conducted to examine the potential influence of such systems on driver's mental distraction. The results obtained for all of the indices show that the mental distraction level when operating a voice-activated system is significantly lower than that of a traditional manually operated system.
Technical Paper

Development of a Brake-Operated Pre-Crash Seatbelt System and Performance Evaluation

2004-03-08
2004-01-0851
The brake-operated pre-crash seatbelt system retracts the seatbelt webbing by activating an electric motor attached to the seatbelt retractor. Detection of emergency braking is used as a trigger to activate the motor. Retracting the seatbelt helps to reduce an occupant's forward movement due to inertial force acting on the occupant's body during deceleration in braking. Addtionally, retraction of the seatbelt webbing also helps existing occupant restraint devices to work more effectively in a crash. The effectiveness of the pre-crash system was evaluated by considering two conditions combined. One involved the dynamic behavior of the vehicle and occupants prior to a crash. The other concerned the safety performance of the vehicle during the crash event. Experiments were conducted to measure the behavior of the vehicle and occupants under emergency braking prior to a crash.
Technical Paper

Numerical Analysis of the Exhaust Gas Flow and Heat Transfer in a Close-Coupled Catalytic Converter System During Warm-Up

2001-03-05
2001-01-0943
A new multidimensional calculation method has been developed to simulate the warm-up characteristics of close-coupled catalytic converter systems. First, a one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate the pulsation gas flow caused by the gas exchange process. The gas flow calculation and a heat transfer calculation are then combined to simulate heat transfer in the exhaust manifold and the catalyst honeycomb under pulsation flow. The predicted warm-up characteristics of the systems examined agreed well with the experimental data. In this simulation, CPU time was reduced greatly through the use of new calculation methods. Finally, the warm-up process of close-coupled catalysts is analyzed in detail with this simulation method. The design requirements for improving warm-up characteristics have been made clear.
Technical Paper

Development of an Adaptive Cruise Control System with Stop-and-Go Capability

2001-03-05
2001-01-0798
An Adaptive Cruise Control system with stop-and-go capability has been developed to reduce the driver's workload in traffic jams on expressways. Based on an analysis of driving behavior characteristics in expressway traffic jams, a control system capable of modeling those characteristics accurately has been constructed to provide natural vehicle behavior in low-speed driving. The effectiveness of the system was evaluated with an experimental vehicle, and the results confirmed that it reduces the driver's workload. This paper presents an outline of the system and its effectiveness along with the experimental results.
Technical Paper

Research on a brake assist system with a preview function

2001-06-04
2001-06-0209
Traffic accidents in Japan claim some 10,000 precious lives every year, and there is seemingly no end to the problem. In an effort to overcome this situation, vehicle manufacturers have been pushing ahead with the development of a variety of advanced safety technologies. Joint public- private sector projects related to Intelligent Transport Systems (ITS) are also proceeding vigorously. Most accidents can be attributed to driver error in recognition, judgment or vehicle operation. This paper presents an analysis of driver behavior characteristics in emergency situations that lead to an accident, focusing in particular on operation of the brake pedal. Based on the insights gained so far, we have developed a Brake Assist System with a Preview Function (BAP) designed to prevent accidents by helping drivers with braking actions. Experimental results have confirmed that BAP is effective in reducing the impact speed and the frequency of accidents in emergency situations.
Technical Paper

Driving Workload Comparison Between Older and Younger Drivers Using the Steering Entropy Method

2002-07-09
2002-01-2080
In this study, an attempt was made to apply the steering entropy method, proposed by Boer and Nakayama as a workload measurement technique, to a comparative evaluation of the workload of older and younger drivers. As the first step, driving simulator tests were conducted to examine a method of making comparisons between subjects whose driving performance differed. The same method was then used in making evaluations during driving tests conducted with an actual vehicle. Under the conditions used in this study, the results indicate that it should be possible to compare driving workloads among different subjects through the combined used of Hp and α. Hp is a quantified value of steering perturbation as an information entropy value that is calculated from a time history of steering angle data. It changes between 0 (no steering perturbation) and 1 (absolute randomness) in a theoretical sense.
Technical Paper

Thermal Fatigue Life of Exhaust Manifolds Predicted by Simulation

2002-03-04
2002-01-0854
A combined computational fluid dynamics (CFD) and finite element (FE) analysis approach has been developed to simulate in the early stages of design the temperature distribution and estimate the thermal fatigue life of an engine exhaust manifold. To simulate the temperature distribution under actual operating conditions, we considered the external and internal flow fields. Digital mock-ups of the vehicle and engine were used to define the geometry of the engine compartment. External-air-flow simulation using in-house CFD code was used to predict the flow fields in the engine compartment and the heat transfer coefficients between the air and the exhaust manifold wall at various vehicle speeds. Unsteady-gas-flow calculation using the STAR-CD thermal- fluids analysis code was to predict the heat transfer coefficients between the exhaust gas and the manifold wall under various operating conditions.
Technical Paper

Analysis of Rollover Restraint Performance With and Without Seat Belt Pretensioner at Vehicle Trip

2002-03-04
2002-01-0941
Eight rollover research tests were conducted using the 2001 Nissan Pathfinder with a modified FMVSS 208 dolly rollover test method where the driver and right front dummy restraint performance was analyzed. The rollover tests were initiated with the vehicle horizontal, not at a roll angle. After the vehicle translated laterally for a short distance, a trip mechanism was introduced to overturn the vehicle. Retractor, buckle, and latch plate performance in addition to the overall seat belt performance was analyzed and evaluated in the rollover test series. Retractor pretensioners were activated near the rollover trip in three of the tests to provide research data on its effects. Various dummy sizes were utilized. The test series experienced incomplete data collection and a portion of the analog data was not obtained. National Automotive Sampling System (NASS) data was also analyzed to quantify the characteristics of real world rollovers and demonstrated the benefits of restraint use.
X