Refine Your Search

Topic

Search Results

Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

Development of a Highly Efficient Manufacturing Method for a Plastic Intake Manifold

2002-03-04
2002-01-0605
A plastic intake manifold has been developed for the new QR engine. This manifold has an intricate shape owing to its performance and layout requirements. The die slide injection (DSI) method was selected to manufacture this complicated shape using the world's first application of a common mold forming technique for a three-piece structure. This paper describes the manufacturing technology and the measures adopted to ensure the strength of welded parts, which is a key point of this method. The benefits obtained by applying this plastic intake manifold to the new engine are also described.
Technical Paper

Application of Hydroforming Simulation on Development of Automobile Parts

2002-03-04
2002-01-0786
Hydrofrorming is an efficient forming process to produce automotive parts for reducing weight of cars. In order to reduce the period of development of hydrofoming parts, numerical simulation using FEM is applied to evaluate formability. A pipe needs to be bent before hydroforming for forming complicated shape parts. A pipe bending process is also necessary to FEM simulation. In this paper, a highly effective method to create a bent pipe FEM model based on geometrical changing between a pipe before and after bending is proposed. The widely used draw bending process is supposed to be applied. The method can construct the model in a short time. Therefore total computation time can be reduced drastically. The effects of number of integration points and elements to the computed results and springback prediction after bending are also investigated. The proposed method are applied to a actual part, the computed results are in good agreement with the experimental results.
Technical Paper

Nissan's New Production System: Intelligent Body Assembly System

1991-02-01
910816
Car makers are working hard today to shorten development and production lead times through the use of flexibile manufacturing systems(FMSs)to meet diversified and individualized customer requirements. To achieve this goal, Nissan has been developing many kinds of new technologies and systems such as: (1) the intelligent body assembly system for body assembly processes; (2) a press die stamping simulation method and unified database for press die manufacturing; (3) a robot and facility teaching system using CAD data; (4) an automated assembly line for trim and chassis assembly operations. These new FMS methods have been implemented in many manufacturing areas, including the stamping shop, body assembly shop, painting shop and trim and chassis shop. This paper focuses mainly on the intelligent body assembly system as a typical example of the new production systems and technologies being developed at Nissan.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Development of Laser-Textured Dull Steel Sheets with Superior Press Formability

1993-03-01
930808
Surface roughness of steel sheet for automotive use is one of the most important control items, because the surface roughness influences image clarity of painted surface, press formability and easiness in handling during manufacturing and processing of steel sheets. Laser texturing technology is introduced into a roll finishing process of cold rolling, and new type of regular surface roughness profile can be processed on the surface of steel sheets. Effective application method of this technology is investigated at the present day. In Japan, Laser-textured dull steel sheets are used for outer-panels of automotive body as the first application. And image clarity after painting of outer panels has been successful in improving. Nowadays, Laser texturing technology is actually used for manufacturing the high image clarity steel sheets, and they are manufactured in large quantities. Another application of Laser texturing technology is for the inner parts which require pressformability.
Technical Paper

Extremely Formable Cold Rolled Sheet Steel with Ultra-High Lankford and n Values - Metallurgy and Formabilities

1993-03-01
930783
Extremely formable cold sheet steel with an ultra-high Lankford value of more than 2.5 and an n value of more than 0.27 has been developed. This steel is obtained due to the following factors; using extremely pure IF (Interstitial free) steel, immediate rapid cooling upon completion of rolling in the hot rolling process, a high reduction in the cold rolling process, and a high soaking temperature in the continuous annealing process. This steel sheet shows excellent deep drawability and stretch formability compared with conventional steel sheet (former IF steel and low carbon aluminum-killed steel) as a result of evaluating the limiting drawing ratio and limiting dome height, respectively. This excellent formability is also shown by the model forming tests for simulating the actual stamping of an oilpan and a side-panel. Furthermore, this steel shows the same spot-weldability as that of former IF steel, and zinc phosphatability similar to that of low carbon aluminum-killed steel.
Technical Paper

Sinter Diffusion Bonded Idler Sprocket of Automotive Engine

1995-02-01
950390
The key-points in the diffusion bonding technique of green compacts during sintering, are the material compositions, which should be chosen according to their dimensional change during sintering, and the fitting clearance, which should be maintained in the range of press fit. Applying this technique, we have developed sinter-diffusion bonded idler sprockets for automotive engines by comfirming the bonding strength and torsional fatigue strength. And we also have developed a nondestructive analysis method for assuring the joint strength of idler sprockets in the mass production.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

The Development on Cold Forging Technique to form a Component of the Constant Velocity Joint

1985-02-01
850353
Cold forging has been applied to form a component of the constant velocity joint. This part, slide joint housing, is made of JIS S48C (SAE 1048) high carbon steel. As it has been very difficult to form this part by cold forging, it has been formed by hot forging up until now. Success was obtained in forming this part by cold forging through improving the chemical composition of S48C high carbon steel and tool design, determining the optimum condition for heat treating the slug, and using a TiC coated punch. Since this slide joint housing, which is nearly net shape, was able to be formed through this cold forging technique, material saving was improved about 40% and machining time was reduced much in comparison with hot forging. Manufacturing cost can be greatly reduced through this cold forging which has been developed.
Technical Paper

Radiation Noise Due to Longitudinal Vibration of the Exhaust Pipe

1985-11-11
852266
The front exhaust pipe and the heat-shield plate of the catalytic converter are excited by the engine vibration. Noise radiation occurs on their surface. Concerning vehicle exterior noise, noise radiated from the exhaust system is often one of major sources as well as engine and exhaust noise. This paper describes the longitudinal vibration model-as a beam-is applied to the high frequency vibration that causes the noise radiated from the exhaust system. It describes also some methods of reducing such noise radiation by isolating the vibration from the front exhaust pipe. These methods are: adding mass to the front pipe, changing the material of the front pipe to a smaller Young's modulus one, installing flexible pipe composed by two sections, and so on.
Technical Paper

On-Line Painted Thermal Plastic Exterior Body Panels for Nissan Be-1 and Application to CAE

1988-02-01
880034
This paper describes the plastic body panels developed for the Nissan Be-1 which was released and put on sale in Japan in January 1987. The panels include four body parts: left and right front fenders, front apron and rear apron. They are made of a thermoplastic resin and are produced by injection molding. The top paint coat can be sprayed on all four panels simultaneously with other steel body panels. The panels provide a high-quality appearance that is in no way inferior to the paint quality of steel panels. This is true during initial use as well as over long periods of time. Besides providing weight reductions, they also deliver improved resistance to impacts. CAE process was applied to develop these panels and proved to be quite effective.
Technical Paper

Front-End Airflow Rate Simulation

1988-11-01
881748
Front-end airflow predictions are generally carried out at the styling stage in the development process for vehicle cooling systems. These predictions have taken on increasing importance in recent years in studying the heat radiation capacities of the radiator. This paper presents a method for simulating front-end airflow rates. Two- and three-dimensional front-end airflow simulations are iirst analyzed experimentally. A technique for predicting a three-dimensional airflow from a numerical analysis of a two-dimensional airflow is then examined, and a comparison is made with actual vehicle data. A sample application of this simulation method is presented and a comparison is made with experimental data. Good quantitative agreement is seen between the calculated and experimental results. This paper also discusses the present status of three-dimensional analysis which is expected to become a major trend in the future.
Technical Paper

Discharge Regulator of Painting Robot and Establishment of CAD Teaching System

1988-11-01
881747
The current spray painting system is hardly considered that the thickness is controlled enough, because the temperature greatly influence on the viscosity of paint. We noticed the problem and detected the temperature at a nozzle of a spray unit. We tried that the paint flow is controlled to get stable thickness more accurately by the temperature feedback system. We also tried to develop the new programming method of robots. This new offline programming system provided us an ideal positions and orientations of the spray gun mounted on a robot wrist, after several simulation in the CAD system. We checked and debugged the office taught date with a trial robot in a trial area, and then loaded down with the date to a target robot. We eventually provided a better production technology with the paintflow control system together with the new CAD based offline programming system.
Technical Paper

Development of Multi-Layer Plastic Fuel Tanks for Nissan Research Vehicle-II

1987-02-01
870304
Plastic fuel tanks are light in weight and rustproof, and have good design flexibility. For those currently in use, however, which are made of mono-layer high-density polyethylene, fuel permeability is too high to meet U.S. evaporative emission standards, which are stricter than those in Japan or the EEC. For minimize fuel permeation, the formation of a harrier layer of polyamide resin by multilayer (three-resin five-layer) blow molding is considered more promising than sulphonation or fluorination treatment of the polyethylene resin. This paper describes the fuel permeation mechanism, then outlines the development of a multi-layer plastic fuel tank, discussion its structural features and the development of resins.
Technical Paper

Development of a Technique for Using Oil Viscosity to Reduce Noise Radiated from the Oil Pan

1999-05-17
1999-01-1759
We have developed a vibration damping technique for the Oil Pan to reduce radiation noise. This technique makes use of oil viscosity. To increase vibration damping of oil pan, we use oil viscosity by forming a thin oil film between the oil pan bottom and an added inner plate. This paper presents the results of vibration tests that were conducted to study the oil damping mechanism and results of applying to a small high-speed diesel engine.
Technical Paper

Development of GF-5 0W-20 Fuel-Saving Engine Oil for DLC-Coated Valve Lifters

2014-04-01
2014-01-1478
A suitable GF-5 engine oil formulation is investigated to improve the fuel economy of gasoline engines with hydrogen-free DLC-coated valve lifters. Molybdenum dithocarbamate (MoDTC) is shown to be a suitable friction modifier for low viscosity grade engine oils like 0W-20. A suitable Ca salicylate detergent is also determined from several types examined for maximizing the friction reduction effects of MoDTC. The most suitable Ca salicylate has a chemical structure capable of forming a borophosphate glass film on metal surfaces, which is known to improve the effects of MoDTC. A high viscosity index Group III base oil (VI>140) is also effective in improving fuel efficiency. It is further clarified that the structural design of the polymethacrylate viscosity modifier is another important factor in reducing engine friction.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 1): Measurement of Equivalent Temperature in a Vehicle Cabin and Development of a Numerical Thermal Manikin

2019-04-02
2019-01-0697
The present paper is Part 1 of two consecutive studies. Part 1 describes three subjects: definition of the equivalent temperature (teq), measurements of teq using a clothed thermal manikin in a vehicle cabin, and modeling of the clothed thermal manikin for teq simulation. After defining teq, a method for measuring teq with a clothed thermal manikin was examined. Two techniques were proposed in this study: the definition of “the total heat transfer coefficient between the skin surface and the environment in a standard environment (hcal)” based on the thermal insulation of clothing (Icl), and a method of measuring Icl in consideration of the area factor (fcl), which indicates the ratio of the clothing surface to the manikin surface area. Then, teq was measured in an actual vehicle cabin by the proposed method under two conditions: a summer cooling condition with solar radiation and a winter heating condition without solar radiation.
X