Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

An Investigation of Injury Factors Concerning Drivers in Vehicles Involved in Small-Overlap Frontal Crashes

2012-04-16
2012-01-0599
The causes of injuries suffered by drivers in “small-overlap frontal crashes” (SOFC) were examined. These crashes were defined as ones in which vehicles are loaded outside their longitudinal side members. SOFC accident data sets stored in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database were investigated. Percentages of cases sustaining injury to each body region of drivers were calculated, and the differences between the percentages of injury by body region were examined. To investigate the injury mechanisms, SOFC tests with two types of rigid barrier were then conducted. Injury values in each body region were analyzed to validate the reproducibility of SOFC test as a relevant test.
Journal Article

Development of Injury Probability Functions for the Flexible Pedestrian Legform Impactor

2012-04-16
2012-01-0277
The goal of this study was to develop injury probability functions for the leg bending moment and MCL (Medial Collateral Ligament) elongation of the Flexible Pedestrian Legform Impactor (Flex-PLI) based on human response data available from the literature. Data for the leg bending moment at fracture in dynamic 3-point bending were geometrically scaled to an average male using the standard lengths obtained from the anthropometric study, based on which the dimensions of the Flex-PLI were determined. Both male and female data were included since there was no statistically significant difference in bone material property. Since the data included both right censored and uncensored data, the Weibull Survival Model was used to develop a human leg fracture probability function.
Technical Paper

Development of Pole Side Impact Sled Test Method using Multiple Actuators for EuroNCAP

2012-04-16
2012-01-0095
The pole side impact test has been mandatory in Euro NCAP since 2009 and it includes, in addition to the head, assessments on other critical body regions that might be affected such as the chest, abdomen and pelvis. This paper describes a new test method for predicting Anthropomorphic Test Device responses to calculate injury index in side impact tests of a rigid pole under Euro NCAP conditions. Simplified sled tests are very effective in reducing the cost and time of development of more advanced side impact safety devices. To accomplish sled tests successfully, it is necessary to reconstruct accurately the combined dynamic deformation behavior of door and seat in pole impact. That behavior varies among different dummy response regions. Conventional sled test methods, published in previous literature, can reconstruct the deformation of the entire door using a single actuator at constant intrusion velocity but actual door velocity isn't constant in full scale vehicle crash tests.
Technical Paper

Early Detection of Reduced Alertness using Subsidiary Behavior

2012-04-16
2012-01-0737
An analysis of drivers' facial expressions and subsidiary behavior events (e.g., yawning, self-touching hand motions, etc.) revealed a significant correlation between the struggle against sleepiness and the frequency of occurrence of such events. We counted drivers' subsidiary behavior events by video analysis and defined nine categories of events related to the mouth, hands, head, shoulders, body and eyes. Mouth-related events were further categorized as yawning, stifling a yawn, exhaling and deep breathing. Yawning and self-touching hand motions in particular were observed in relatively large numbers among subsidiary behavior events. Based on this observation, we created an algorithm for detecting yawning and self-touching hand motions using a monocular camera and calculated the frequency of these subsidiary behavior events. In experiments, we compared the frequency of the subsidiary behavior events at the outset of driving and after the passage of time.
Technical Paper

Development of a Finite Element Model of the Flex-PLI-GTR

2012-04-16
2012-01-0551
Evaluation of pedestrian leg protection performance using the Flex-PLI-GTR (Flexible Pedestrian Legform Impactor Global Technical Regulation) impactor is initiated in JNCAP in 2011. Therefore, a finite element (FE) model of Flex-PLI-GTR is needed for use in digital car development in order to satisfy pedestrian leg protection performance requirements. This paper describes the FE model of Flex-PLI-GTR that has been developed to meet this need. There are three important features of this FE model for obtaining sufficient simulation accuracy. First, the shapes of all Flex-PLI-GTR structures were modeled in detail. Shape information of the inner structures was obtained by computerized tomography scanning and shape information of the inner structures of the outer skin was obtained by laser measurement. Furthermore, the shape of the wrapped skin was incorporated into the FE model based on a wrapping simulation.
Technical Paper

Control of Grasping Force in Teleoperation Using Model Reference Adaptive Approach

1994-06-01
941440
The adaptation to changes in human operator dynamics and changes in working environment dynamics can be an important issue in designing high performance telerobotic systems. This paper describes an approach to force control in telerobotic hand systems in which model reference adaptive control techniques are used to adapt to changes in human operator and working environment dynamics. The techniques have been applied to force-reflective control of a single degree-of-freedom telerobotic gripper system at Wisconsin Center for Space Automation and Robotics (WCSAR). This adaptive gripping system is described in the paper along with results of experiments with human subjects in which the performance of the adaptive system was analysed and compared to the performance of a conventional non-adaptive system. These experiments emphasized adaptation to changes in compliance of gripped objects and adaptation to the on-set of human operator fatigue.
Technical Paper

Adapting Farm Equipment for Workers with Disabilities

2004-10-26
2004-01-2704
Farm workers experience a very high incidence of injuries leading to physical and cognitive (strokes, TBI) disabilities. Since 1991, the AgrAbility Project 2 and its staff have provided direct assistance and education to many U.S. farmers and farm workers. If farmers, ranchers or farm workers who become disabled continue to be employed in agriculture, often their agricultural operation must be modified and/or agricultural machinery must be modified or adaptive equipment purchased to meet their new needs. Some common tractor modifications include operator lifts, hand controls, added/modified steps and handrails, automated hitches, and custom seating. Some modifications are commercially available but others are done on an individual need basis. AgrAbility staff would welcome the opportunity to work closer with farm equipment manufacturers to create modifications that would make farming and ranching easier and safer for all.
X