Refine Your Search

Topic

Author

Search Results

Journal Article

Comparative Assessment of Frequency Dependent Joint Properties Using Direct and Inverse Identification Methods

2015-06-15
2015-01-2229
Elastomeric joints are utilized in many automotive applications, and exhibit frequency and excitation amplitude dependent properties. Current methods commonly identify only the cross-point joint property using displacement excitation at stepped single frequencies. This process is often time consuming and is limited to measuring a single dynamic stiffness term of the joint stiffness matrix. This study focuses on developing tractable laboratory inverse experiments to identify frequency dependent stiffness matrices up to 1000 Hz. Direct measurements are performed on a commercial elastomer test system and an inverse experiment consisting of an elastic beam (with a square cross section) attached to a cylindrical elastomeric joint. Sources of error in the inverse methodology are thoroughly examined and explained through simulation which include ill-conditioning of matrices and the sensitivity to modeling error.
Technical Paper

Model-Based Design of a Hybrid Powertrain Architecture with Connected and Automated Technologies for Fuel Economy Improvements

2020-04-14
2020-01-1438
Simulation-based design of connected and automated hybrid-electric vehicles is a challenging problem. The design space is large, the systems are complex, and the influence of connected and autonomous technology on the process is a new area of research. The Ohio State University EcoCAR Mobility Challenge team developed a comprehensive design and simulation approach as a solution. This paper covers the detailed simulation work conducted after initial design space reduction was performed to arrive at a P0-P4 hybrid vehicle with a gasoline engine. Two simulation environments were deployed in this strategy, each with unique advantages. The first was Autonomie, which is a commercial software tool that is well-validated through peer-reviewed studies. This allowed the team to evaluate a wide range of components in a robust simulation framework.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Acoustic Characteristics of Automotive Catalytic Converter Assemblies

2004-03-08
2004-01-1002
An experimental study of the acoustic characteristics of automotive catalytic converters is presented. The investigation addresses the effects and relative importance of the elements comprising a production catalytic converter assembly including the housing, substrate, mat and seals. Attenuation characteristics are measured for one circular and one oval catalytic converter geometry, each having 400 cell per square inch substrates. For each geometry, experimental results are presented to address the effect of individual components in isolation, and in combination with other assembly components. Additional experiments investigate the significance of acoustic paths around the substrate and through the peripheral wall of the substrate. The experimental results are compared to address the significance of each component on the overall attenuation.
Technical Paper

Impact of Servo Press Motion on Hole Flanging of High Strength Steels

2017-03-28
2017-01-0311
The capabilities of the servo press for varying the ram speed during stroke and for adjusting the stroke length are well known. Various companies installed servo presses for blanking. Some of the considerations may include increase in productivity and flexibility in adjusting the ram stroke, noise reduction and improvement of edge quality of blanked edge. The objectives of this study are to determine the effect of ram (blanking) speed upon the edge quality, and the effect of multiple step blanking using several punch motions, during one blanking stroke.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

The Highway Research Laboratory of Ohio's Transportation Research Center

1970-02-01
700524
This paper presents some of the technical considerations that underlie the development of the master plan and the establishment of design specifications for Ohio's Highway Research Laboratory. It describes the overall features of the master plan and discusses some of the critical design features as these relate to the various tracks and other field facilities. The development of the master plan was guided by a study of the layout of existing proving grounds and by the experience gained over the years in their operations. It was guided furthermore by a set of principles relating to operational considerations, considerations of flexibility in the layout, land utilization, safety, capacity, and cost. Finally, it was guided by an indication of future research and development needs as expressed by researchers and potential sponsors in both government and industry.
Technical Paper

Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II

1983-02-01
830717
Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing.
Technical Paper

Comparison of Intermediate-Combustion Products Formed in Engine with and without Ignition

1955-01-01
550262
RESULTS of tests performed on a modified type F-4 CFR engine show that precombustion reactions in both the fired and motored engine gave the same carbonyl products. The maximum specific yields of these carbonyls were similar for a given fuel compressed with comparable pressure-time-temperature histories in both motored- and fired-engine tests. As the motored engine seems to duplicate precombustion reactions occurring in a fired engine under normal operating conditions, the authors of this paper conclude that the motored engine, offering ease of control and sampling, is a convenient and valid tool for combustion research.
Technical Paper

AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data

2022-03-29
2022-01-0104
This research leverages publicly available crash data to construct safety-critical scenarios focusing primarily on Level 3 Automated Driving Systems (ADS) safety assessment under highway driving conditions. NHTSA’s Crashworthiness Data System (CDS) has a rich dataset of representative crashes sampled from numerous Primary Sampling Units (PSUs) across the country. Each of these datasets includes the storyline, road geometry information, detailed description of actors involved in the crash, weather information, scene diagrams, crash images, and a myriad of other crash-specific details. The methodology adopted aims to generate critical scenarios from real-world driving to complement the existent regulatory tests for the validation of L3 ADS. For this work, a four-step approach was adopted to extract safety-critical scenarios from crash data.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Technical Paper

Biologically Inspired, Intelligent Muscle Material for Sensing and Responsive Delivery of Countermeasures

2000-07-10
2000-01-2514
The design and development of new biologically inspired technologies based on intelligent materials that are capable of sensing the levels of target biomolecules and, if needed, trigger appropriate countermeasures to regulate biological processes and rhythms of the astronauts is being undertaken in our laboratories. This is accomplished by coupling biologically inspired sensors that monitor the levels of the target biomolecules with intelligent polymeric materials that can regulate the release of a countermeasure. The technology developed here integrates sensors and artificial muscle material into a self-regulating device that can perform with minimal crew intervention. Further, it takes advantage of microfabrication technology to construct lightweight and robust responsive delivery systems. These “intelligent” devices address the need for the control and regulation of biological processes and rhythms under spaceflight conditions.
Technical Paper

Integrated Approach to the Selection of Cost-Effective and Lean Process and Equipment in Forming

1999-03-01
1999-01-0423
A significant number of formed parts constitute the components of an automobile or aircraft. The formed blanks for the components are produced at different temperatures ranging from room temperature to 2250 degrees Fahrenheit for steel. Forming progressions convert a basic shape or geometry (a cylindrical billet, for example) of metal into a more complex shape close to the required final component geometry. The progression steps, choice of temperatures and equipment significantly impact the cost of the blank. A ‘Discriminating Cost Model’ was developed to capture the cost effectiveness of a given choice of process or equipment, and an AI (Artificial Intelligence) search algorithm implemented to quickly search through the large number of process and equipment selection options to arrive at the most cost effective choice. Two applications of this methodology to existing plant processes to significantly reduce cost and implement ‘lean’ principles of manufacturing are discussed.
Technical Paper

Estimation of Cutting Parameters in Two-Stage Piercing to Reduce Edge Strain Hardening

2019-04-02
2019-01-1092
Edge fracture is a common problem when forming advanced high strength steels (AHSS). A particular case of edge fracture occurs during a collar forming/hole extrusion process, which is widely used in the sheet metal forming industry. This study attempts to relate the edge stretchability in collar forming to the strain hardening along the pierced edge; thus, Finite Element (FE) simulations can be used to reduce the number of experiments required to improve cutting settings for a given material and thickness. Using a complex-phase steel, CP-W 800 with thickness of 4.0 mm, a single-stage piercing operation is compared with a two-stage piercing operation, so called shaving, in terms of strains along the pierced edge, calculated by FE simulation. Results indicated that strains were reduced along the pierced edge by shaving.
Technical Paper

High Speed Ridged Fasteners for Multi-Material Joining

2019-04-02
2019-01-1117
Automobile manufacturers are reducing the weight of their vehicles in order to meet strict fuel economy legislation. To achieve this goal, a combination of different materials such as steel, aluminum and carbon fiber composites are being considered for use in vehicle bodies. The ability to join these different materials is an ongoing challenge and an area of research for automobile manufacturers. Multiridged fasteners are a viable option for this type of multi-material joining. Commercial systems exist and are being used in the industry, however, new ridged nail designs offer the potential for improvement in several areas. The goal of this paper is to prototype and test a safer flat-end fastener whilst not compromising on strength characteristics, to prevent injury to factory workers. The nails were prototyped using existing RIVTAC® nails.
Technical Paper

Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator

2015-04-14
2015-01-0701
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires, caused by passage of a capacitor bank driven current on the order of 100 kA. The burst of the conductor is accompanied with a high-pressure pulse, which can be used for working metal at high strain rates. This paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1 mm thickness were launched to velocities in excess of 650 m/s with input electrical energy of 8 kJ into 0.0762 mm thick, dog-bone shaped aluminum foil actuators. Target sheets made from dual phase steel (DP780) were impacted with the aluminum flyer sheet, and solid state impact welds were created. During mechanical testing, many samples failed outside the weld area, thereby indicating that the weld was stronger than the parent aluminum.
Technical Paper

Accuracy Assessment of Three-Dimensional Site Features Generated with Aid of Photogrammetric Epipolar Lines in PhotoModeler and Using Minimal sUAS Imagery

2019-04-02
2019-01-0410
Photogrammetry is widely used in the accident reconstruction community to extract three-dimensional information from photographs. This article extends a prior study conducted by the authors, whereby model accuracy was assessed for a technique that exploited vehicle edges and epipolar line projections to construct 3D vehicle models, by examining 3D roadway and site features. To do so, artificial images were generated using an ideal computer-generated camera within a computer-assisted drawing environment to allow for a known reference model to compare with results produced using photogrammetry. A systematic study was undertaken by modeling the curvature, elevation, and super-elevation of a roadway and associated markings, sidewalks, and buildings, either by relying on discrete points or utilizing epipolar lines. The models were assessed for accuracy, and the sensitivity of the accuracy to camera elevation was considered.
X