Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Journal Article

Direct Coil Cooling of a High Performance Switched Reluctance Machine (SRM) for EV/HEV Applications

2015-04-14
2015-01-1209
This paper presents the development of a novel direct coil cooling approach which can enable high performance for electric traction motor, and in further significantly reduce motor losses. The proposed approach focuses on bypassing critical thermal resistances in motor by cooling coils directly in stator slots with oil flow. Firstly, the basic configuration and features are shown: sealed stator slots to air gap, pressure reservoirs on both side of the slots and slot channels for oil flow. The key to enhance thermal performance of the motor here is based on introducing fluid guiding structure in the slot channels. Next, heat transfer in the channel with guiding structure is investigated by CFD and compared with bare slot channel without guiding structure. For studying the effectiveness of proposed cooling concept, numerical analysis is conducted to compare it with HEV favored oil impingement cooling.
Journal Article

Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection

2009-04-20
2009-01-0613
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions regulations require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes it necessary to carry out an explicit thermodynamic analysis of the combustion process during the start-up. As of today, the well-known thermodynamic analysis using in-cylinder pressure traces at stationary condition is transmitted to the highly dynamic engine start-up. Due to this approximation the current models for calculation of the transient wall heat fluxes by Woschni, Hohenberg and Bargende do not lead to desired results. But with a fraction of approximately 40 % of the burnt fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis during start-up.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Technical Paper

Electronically Controlled High Pressure Unit Injector System for Diesel Engines

1991-09-01
911819
To achieve the future emissions regulations with low particulate and Nox levels, both the engine combustion system and the fuel injection equipment will have to be improved. For the fuel injection equipment, high injection pressure and variable injection timing as a function of engine speed, load, and temperature are of great importance. BOSCH is developing two different solutions: electronically controlled unit injector and single cylinder pump systems, high-pressure inline pumps with control sleeve and electronic control. This paper describes: the unit injector and its high-pressure solenoid valve the requirements for the mounting of the unit injector in the engine the low-pressure system the electronic control unit and the metering strategy
Journal Article

Novel Transient Wall Heat Transfer Approach for the Start-up of SI Engines with Gasoline Direct Injection

2010-04-12
2010-01-1270
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions limits require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. But with a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Technical Paper

Solenoid-Valve Controlled Diesel Distributor Injection Pump

1993-03-01
930327
The electronically-governed diesel distributor injection pump, with the proven sleeve control of injection quantity, has been in production at Bosch since 1987. Long-term development resulted in a solenoid-valve controlled injection pump. The function and component assemblies, consisting of the injection pump, solenoid valve and control unit, provide an even more flexible injection system. Of particular advantage with this type of system are the high dynamics of the fuel quantity, matching of each individual injection and the exact pump-specific fuel quantity compensation at numerous map points. Further advantages are the selection of timing and fuel injection rate independent of each other, as well as the ability to provide the correct timing even at cranking speeds. The entire system, with emphasis on the injection pump and the solenoid valve, are described for IDI engines in this paper.
Technical Paper

Investigation on Fluid Mechanics of the Regenerative Pump Used in Gasoline Injection Systems

1995-02-01
950077
In order to optimize the inner flow of the regenerative pump used in gasoline injection systems, we carry out experimental and numerical flow investigations. A qualitative analysis of spatial flow phenomena in selected regions of the pump is presented by employing the laser light sheet technique. Therefore, a tenfold enlarged water model is built up, where dynamic similarity with the original flow is achieved. The results of the flow analysis have led to improved geometries which are compared with the original design by measured pump characteristic curves. Furthermore, three-dimensional simulations of the fully developed turbulent flow using a finite-element method are presented. The flow with respect to the rotating impeller is calculated by solving the Reynolds equations in connection with the k-ε-turbulence model.
Technical Paper

Numerical and Experimental Analysis of the Momentum and Heat Transfer in Exhaust Gas Sensors

2005-04-11
2005-01-0037
Modern zirconia oxygen sensors are heated internally to achieve an optimal detection of the oxygen concentration in the exhaust gas and fast light off time. The temperature of the gas in the exhaust pipe varies in a wide range. The zirconia sensor is cooled by radiation and forced convection caused by cold exhaust gas. If the zirconia temperature falls, the oxygen detection capability of the sensor decreases. To minimize the cooling effects, protection tubes cover the zirconia sensor. However, this is in conflict with the aim to accelerate the dynamics of the lambda sensor. In this paper, the heat transfer at the surface of a heated planar zirconia sensor with two different double protection tubes of a Bosch oxygen sensor is examined in detail. The geometric configuration of the tubes forces different flow patterns in the inner protection tube around the zirconia sensor. The zirconia sensor is internally electrically heated by a platinum heater layer.
Technical Paper

The Robert Bosch In-Line Pump for Diesel Engines, Type MW, Design, Application and Further Development

1979-02-01
790901
The range of Robert Bosch in-line pumps is designed for engines with cylinder outputs of up to 200 kW. Within this family of pumps the MW pump is used in small IDI engines and medium-sized DI engines with cylinder outputs in the region of 30 kW. More stringent exhaust emission legislation and the need to ensure optimum fuel economy call for efficient fuel-injection systems for diesel engines. In both of its designs the new MW pump meets these more exacting requirements and forms the contribution of Robert Bosch GmbH toward developing advanced diesel engines.
Technical Paper

High-Pressure Injection Pumps with Electronic Control for Heavy-Duty Diesel Engines

1985-02-01
850170
Within the Robert Bosch Diesel Injection Pump Program, the MW and P pumps have a fundamental significance concerning medium-duty and heavy- duty engines. These engines have developed considerably in the last years with regard to combustion efficiency and emission reduction. In order to reach these new targets, specific developments of the pump were necessary to realize injection pressure of 900 bar and 1200 bar for the MW and P pumps, respectively. A further development emphasis of the past years was the development of a robust electronic governor concept to take advantage of this new technology. The topics of the paper are: Further development of the pump drivetrain and housing to cope with the difficulties inherent in producing 1000 bar. Development of constant-pressure valves. Preparation of the electronic governor concept for commercial vehicles. Development results of the electro-magnetic and electro-hydraulic actuators.
Technical Paper

Fuel Injection Equipment for Heavy Duty Diesel Engines for U. S. 1991/1994 Emission Limits

1989-02-01
890851
The particulate emissions can be reduced by increasing injection pressure. The NOx-emission can be lowered to the required amount with a retarded injection-begin. These measures raise fuel consumption by approximately 8-10 %. To avoid blue smoke from the cold engine, it is advantageous that the fuel injection is advanced during the warm-up period. These statements apply for injection systems with unit injectors as well as for pump-line-nozzle-systems. In this paper, the pump-line-nozzle-system will be described. With this system, injection pressures of 1200 to 1400 bar at the injection nozzle are reached. The injection-begin can be changed with a control-sleeve in-line pump. The injection-begin and fuel quantity can be flexibly and accurately adjusted by means of an electronic governor.
Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Technical Paper

Experimental Investigation of Flame-Wall-Impingement and Near-Wall Combustion on the Piston Temperature of a Diesel Engine Using Instantaneous Surface Temperature Measurements

2018-09-10
2018-01-1782
The heat transfer process in a reciprocating engine is dominated by forced convection, which is drastically affected by mean flow, turbulence, flame propagation and its impingement on the combustion chamber walls. All these effects contribute to a transient heat flux, resulting in a fast-changing temporal and spatial temperature distribution at the surface of the combustion chamber walls. To quantify these changes in combustion chamber surface temperature, surface temperature measurements on the piston of a single cylinder diesel engine were taken. Therefore, thirteen fast-response thermocouples were installed in the piston surface. A wireless microwave telemetry system was used for data transmission out of the moving piston. A wide range of parameter studies were performed to determine the varying influences on the surface temperature of the piston.
Technical Paper

Incorporating Thermo- and Aerodynamic Losses into Compressor Models for Real-Time Applications

2015-04-14
2015-01-1715
Compressor models play a major role as they define the boost pressure in the intake manifold. These models have to be suitable for real-time applications such as control and diagnosis and for that, they need to be both accurate and computationally inexpensive. However, the models available in the literature usually fulfill only one of these two competing requirements. On the one hand, physics-based models are often too complex to be evaluated on line. On the other hand, data-based models generally suffer insufficient extrapolation features. To combine the merits of these two types of models, this work presents an extended approach to compressor modeling with respect to thermo- and aerodynamic losses. In particular, the model developed by Martin et al. [1] is augmented to explicitly incorporate friction, incidence and heat transfer losses. The resulting model surpasses the extrapolation properties of data-based models and facilitates the generation of extended lookup tables.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
X