Refine Your Search

Topic

Author

Search Results

Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Failure Loads of Spot Friction Welds in Aluminum 6111-T4 Sheets under Quasi-Static and Dynamic Loading Conditions

2007-04-16
2007-01-0983
In this investigation, spot friction welds in aluminum 6111-T4 lap-shear specimens were tested under both quasi-static and dynamic loading conditions. Micrographs of the spot friction welds after testing were examined to understand the failure modes of spot friction welds in lap-shear specimens under different loading conditions. The micrographs indicate that the spot friction welds produced by this particular set of welding parameters failed in interfacial failure mode under both quasi-static and dynamic loading conditions. The load and displacement histories for lap-shear specimens were obtained under quasi-static and dynamic loading conditions at three different impact velocities. The failure loads of spot friction welds in lap-shear specimens under dynamic loading conditions are about 7% larger than those under quasi-static loading conditions.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

Laser & Fine Plasma Trimming of Sheet Metal Parts for Low Volume Production

1998-09-29
982333
This study compared laser and fine plasma technology for cutting typical electro-galvanized steel and aluminum automotive stampings. Comparisons were made of various aspects of cut quality, accuracy, disturbance of parent material, cycle time, and capital and operating costs. A sensitivity analysis was included to determine how different scenarios would impact the operating costs. It was found that both processes were capable of high quality cuts at 3800mm/min. Capital savings were achievable through the fine plasma system, but careful consideration of the specific application was essential. This work will allow for an advised comparison of options for sheet metal flexible cutting.
Technical Paper

Numerical Analysis of Thermal Growth of Cast Aluminum Engine Components

2008-04-14
2008-01-1419
As-cast or as-solution treated cast aluminum A319 has copper solutions within its aluminum dendrite. These copper solutions precipitate out to form Al2Cu through a sequence of phase changes and bring with them volume changes at elevated temperatures. These volume changes, referred to as thermal growth are irreversible. The magnitude of thermal growth at a material point is decided by the temperature history of the material point. When an under aged or non heat treated cast aluminum is exposed to non-uniform temperature such as that during engine operation, thermal growth leads to non-uniform volume change and thus additional self balanced stresses. These stresses remain inside material as residual stresses even when the temperature of the material is uniform again. In the present paper, numerical analysis method for thermal growth is developed and integrated into engine operation analysis.
Technical Paper

Analysis of Phosphorus Poisoning on Exhaust Catalysts from Compact-Class Vehicle

2004-03-08
2004-01-0147
Phosphorous poisoning on customer-aged catalysts was investigated by material analysis and performance testing. Most of the phosphorus was associated with the oxide components in the washcoat. These contaminants were roughly classified as aluminum phosphate, cerium phosphate, zinc-calcium phosphate. Deactivation of the catalyst with aluminum phosphate was strong and followed a linear correlation from oxalic acid testing. Phosphorus scavenging additives were researched to inhibit increase of aluminum phosphate. According to thermodynamic calculations, lower free energy of compounds of additive and phosphate is expected to prevent formation of aluminum phosphate.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

Fatigue Analysis of Steel MIG Welds in Automotive Structures

2004-03-08
2004-01-0627
MIG weld failures are commonly seen in chassis and frame structures in automobile industry. Until now, testing and CAE analysis based on local stresses in the vicinity of MIG weld were driving the design of these welds. With the advent of advanced methods and tools, it is possible to estimate fatigue life of MIG welds and support the design in the early stages of the vehicle program. Recently, fatigue damage models are developed for assessing the durability of MIG welds in aluminum auto structures. These damage models are based on advanced technologies like mesh-insensitive structural stress method, virtual node method, estimation of notch stress intensities and life predictions based on two-stage crack growth law. This paper outlines the theoretical aspects involved in deriving the master S-N curve.
Technical Paper

Friction Stir Welding of Extruded Aluminum for Automotive Applications

2004-03-08
2004-01-1333
The use of Friction Stir Welding (FSW) is a robust process to use in the assembly of aluminum automotive components. The advantages include: minimal distortion, higher tensile strength, lower costs and improved weld capability than other joining processes. Though a simple process, there are key parameters that must be carefully selected to optimize the weld. This paper will focus on the use of FSW to assemble extrusions into automotive components.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Classical Plasticity Hardening for Finite Element Analysis of Cast Aluminum Powertrain Components

2002-03-04
2002-01-0392
Material stress strain relations of cast aluminum are both temperature and strain rate dependent when used for themomechanical fatigue analysis. In the present paper, A unified visco-plasticity relation and several classical plasticity relations available in commercial finite element code ABAQUS are compared in their capability and computation efficiency for high temperature cyclic material stress analysis. The unified viscoplasticity considers simultaneously plasticity and creep offers the best, most accurate approach for a description of the stress and strain behavior. For certain applications, when the needs of a speedy computation weighs more than accuracy, classical plasticity can be used to approximate the viscoplastic behavior. In such situations, it is shown that combined hardening model is most promising in capturing observed phenomena.
Technical Paper

Aluminum Vehicle Side Impact Design, Test and CAE

2002-03-04
2002-01-0249
Ford designed and built a midsize family sedan for the PNGV (Partnership for a New Generation of Vehicle). The side impact performance of the aluminum vehicle and the current CAE capability was studied. The vehicle was tested according to the specifications of FMVSS 214. The results show the vehicle meet the federal safety requirements. The impact performances of the front and rear dummies were comparable to those of the steel counterpart. CAE analysis was conducted to develop the body component design and to predict the structural and dummy responses. The results show that without modeling of the joint (rivet and weld) separation, the accuracy of the CAE crash analysis for this aluminum vehicle was inadequate. When empirical separation criteria were incorporated to model the joint, analysis results correlated with the test. Further development of robust modeling methods for joint separation is needed to improve the prediction of aluminum structure crash responses.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Technical Paper

Thermal Fatigue Analysis of Cast Aluminum Cylinder Heads

2002-03-04
2002-01-0657
Thermal fatigue presents a new challenge in cast aluminum engine design. Accurate thermomechanical stress analysis and reliable failure criterion are the keys to a successful life prediction. It is shown that the material stress and strain behavior of cast aluminum is strongly temperature and strain rate sensitive. A unified viscoplasticity constitutive relation is thus proposed to simultaneously describe the plasticity and creep of cast aluminum components deforming at high temperatures. A fatigue failure criterion based on a damage accumulation model is introduced. Damages due to mechanical fatigue, environmental impact and creep are accounted for. The material stress and strain model and thermal fatigue model are shown to be effective in accurately capturing features of thermal fatigue by simulating a component thermal fatigue test using 3D FEA with ABAQUS and comparing the results with measured data.
Technical Paper

Fatigue Overload Response of Aluminum Spot Welds

2002-03-04
2002-01-0576
The fatigue overload behavior of single overlap 5754 aluminum spot welds has been investigated. As a baseline, constant amplitude tension-tension tests with an R=0.1 (=Pmin/Pmax) were conducted. These tests were compared both with several different series of high but variable mean constant maximum load tests, and with periodic overload tests. The high mean load tests, tested with maximum loads of 3560N, 2670N, 1780N, and 1330N all showed a significant reduction in the fatigue limit which ranged from less than ½ to almost 1/3 of the baseline fatigue curve. Further, the fatigue limit reduction from the periodic overload tests was below 1/3 of the constant amplitude baseline tests. The results of these tests indicate that mean loads and variable amplitude loading can both have a significant deleterious impact on fatigue life.
Technical Paper

An Obliquely Incident X-Ray Radiography to Measure Greatest Corrosion Depths in Automobile Metallic Plates

2003-03-03
2003-01-1241
An obliquely incident X-ray radiography was developed to measure the greatest depths, orientations and locations of corrosion pits in automobile metallic plates. This technique can also be used on-site for components in use. The corrosion depth profile and the greatest depth can be calculated with the established relations. A 3-D rotational microscope and surface profiler were utilized to evaluate the sensitivities and accuracies of the technique for aluminum and steel plates, respectively.
Technical Paper

The Use of Semi-Solid Rheocasting (SSR) for Aluminum Automotive Castings

2003-03-03
2003-01-0433
Semi-solid metal (SSM) casting has long been identified as a high-volume process for producing safety-critical and structural automotive castings, but cost and complexity issues have limited its widespread commercial acceptance. Rheocasting, an SSM process that creates semi-solid slurry directly from liquid metal, eliminates the cost disadvantages of the process. However, the majority of rheocasting processes are complex and difficult to operate in the foundry environment. Recent work at MIT has led to the fundamental discovery that application of heat removal and convection as a molten alloy cools through the liquidus creates a non-dendritic, semi-solid slurry. A new process based on this understanding, S.S.R.™ (Semi-Solid Rheocasting), simplifies the rheocasting process by controlling heat removal and convection of an alloy during cooling using an external device. Solution heat treatable castings have been produced in a horizontal die casting machine with the S.S.R.™ process.
X