Refine Your Search

Topic

Author

Search Results

Journal Article

Simulation of Organic Rankine Cycle Electric Power Generation from Light-Duty Spark Ignition and Diesel Engine Exhaust Flows

2013-04-08
2013-01-1644
The performance of an organic Rankine cycle (ORC) used to recover waste heat from the exhaust of a diesel and a spark ignition engine for electric power generation was modeled. The design elements of the ORC incorporated into the thermodynamic model were based on an experimental study performed at Oak Ridge National Laboratory in which a regenerative organic Rankine cycle system was designed, assembled and integrated into the exhaust of a 1.9 liter 4-cylinder automotive turbo-diesel. This engine was operated at a single fixed-load point at which Rankine cycle state point temperatures as well as the electrical power output of an electric generator coupled to a turbine that expanded R245fa refrigerant were measured. These data were used for model calibration.
Technical Paper

Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles

2020-04-14
2020-01-1282
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control on a chassis dynamometer typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Journal Article

Investigation of In-cylinder NOx and PM Reduction with Delphi E3 Flexible Unit Injectors on a Heavy-duty Diesel Engine

2008-06-23
2008-01-1792
In-cylinder emission controls were the focus for diesel engines for many decades before the emergence of diesel aftertreatment. Even with modern aftertreatment, control of in-cylinder processes remains a key issue for developing diesel vehicles with low tailpipe emissions. A reduction in in-cylinder emissions makes aftertreatment more effective at lower cost with superior fuel economy. This paper describes a study focused on an in-cylinder combustion control approach using a Delphi E3 flexible fuel system to achieve low engine-out NOx and PM emissions. A 2003 model year Detroit Diesel Corporation Series 60 14L heady-duty diesel engine, modified to accept the Delphi E3 unit injectors, and ultra low sulfur fuel were used throughout this study. The process of achieving premixed low temperature combustion within the limited range of parameters of the stock ECU was investigated.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Journal Article

Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels

2010-10-25
2010-01-2117
Total and solid particle mass, size, and number were measured in the dilute exhaust of a 2009 vehicle equipped with a gasoline direct injection engine along with an exhaust three-way-catalyst. The measurements were performed over the FTP-75 and the US06 drive cycles using three different U.S. commercially available fuels, Fuels A, B, and C, where Fuel B was the most volatile and Fuel C was the least volatile with higher fractions of low vapor pressure hydrocarbons (C10 to C12), compared to the other two fuels. Substantial differences in particle mass and number emission levels were observed among the different fuels tested. The more volatile gasoline fuel, Fuel B, resulted in the lowest total (solid plus volatile) and solid particle mass and number emissions. This fuel resulted in a 62 percent reduction in solid particle number and an 88 percent reduction in soot mass during the highest emitting cold-start phase, Phasel, of the FTP-75, compared to Fuel C.
Technical Paper

Lower Explosion Limits and Compositions of Middle Distillate Fuel Vapors

1998-10-19
982485
Lower explosion limits (LEL) and the chemical compositions of JP-8, Jet A and JP-5 fuel vapors were determined in a sealed combustion vessel equipped with a spark igniter, a gas-sampling probe, and sensors to measure pressure rise and fuel temperature. Ignition was detected by pressure rise in the vessel. Pressure rises up to 60 psig were observed near the flash points of the test fuels. The fuel vapors in the vessel ignited from as much as 11°F below flash-point measurements. Detailed hydrocarbon speciation of the fuel vapors was performed using high-resolution gas chromatography. Over 300 hydrocarbons were detected in the vapors phase. The average molecular weight, hydrogen to carbon ratio, and LEL of the fuel vapors were determined from the concentration measurements. The jet fuel vapors had molecular weights ranging from 114 to 132, hydrogen to carbon ratios of approximately 1.93, and LELs comparable to pure hydrocarbons of similar molecular weight.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Study of Modern Application Strategies for Catalytic Aftertreatment Demonstrated on a Production V6 Engine

2001-03-05
2001-01-0925
A study was performed to develop optimum design strategies for a production V6 engine to maximize catalyst performance at minimum pressure loss and at minimum cost. Test results for an advanced system, designed to meet future emission limits on a production V6 vehicle, are presented based on FTP testing. The on-line pressure loss and temperature data serves to explain the functioning of the catalyst.
Technical Paper

Effect of Reduced Boost Air Temperature on Knock Limited Brake Mean Effective Pressure (BMEP)

2001-09-24
2001-01-3682
The effect of low temperature intake air on the knock limited brake mean effective pressure (BMEP) in a spark ignited natural gas engine is described in this paper. This work was conducted to demonstrate the feasibility of using the vaporization of liquefied natural gas (LNG) to reduce the intake air temperature of engines operating on LNG fuel. The effect on steady-state emissions and transient response are also reported. Three different intake air temperatures were tested and evaluated as to their impact upon engine performance and gaseous emissions output. The results of these tests are as follows. The reduced intake air temperature allowed for a 30.7% (501 kPa) increase in the knock-limited BMEP (comparing the 10°C (50°F) intake air results with the 54.4°C (130°F) results). Exhaust emissions were recorded at constant BMEP for varying intake air temperatures.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Technical Paper

Hydraulic System Configurations for Improved Efficiency

2002-03-19
2002-01-1433
The design and selection of a hydraulic system for a particular machine is based upon a variety of factors which include: functionality, performance, safety, cost, reliability, duty cycle, component availability, and efficiency. With higher fuel costs and requirements to reduce engine exhaust emissions, new hydraulic system configurations should be considered. Traditional hydraulic systems conssume an excessive amount of energy due to metering losses. A single pump usually supplies flow to multiple functions, with differing flow and pressure requirements resulting in excessive metering losses. The energy of mass and inertial loads is usually dissipated by metering losses. Opportunities exist for reducing metering losses by the use of multiple pumps and by using hydrostatic control of individual functions. Hydrostatic control also allows for energy recovery when used in conjunction with an energy storage system.
Technical Paper

Effects of High Temperature and Pressure on Fuel Lubricated Wear

2001-09-24
2001-01-3523
While standardized laboratory-scale wear tests are available to predict the lubricity of liquid fuels under ambient conditions, the reality is that many injection systems operate at elevated temperatures where fuel vaporization is too excessive to perform the measure satisfactorily. The present paper describes a High Pressure High Frequency Reciprocating Rig (HPHFRR) purposely designed to evaluate fuel lubricity in a pressurized environment at temperatures of up to 300°C. The remaining test parameters are identical to those of the widely standardized High Frequency Reciprocating Rig (HFRR). Results obtained using the HPHFRR indicate that wear rate with poor lubricity fuels is strongly sensitive to both temperature and oxygen partial pressure and may be orders of magnitude higher than at ambient conditions. Surprisingly however, wear rate was found to decrease dramatically at temperatures above 100°C, possibly due to evaporation of dissolved moisture.
Technical Paper

Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine

2002-03-04
2002-01-0347
It has been shown within the catalyst industry that the emission performance with higher cell density technology and therefore with higher specific geometric area is improved. The focus of this study was to compare the overall performance of high cell density catalysts, up to 1600cpsi, using a MY 2001 production vehicle with a 4.7ltr.V8 engine. The substrates were configured to be on the edge of the design capability. The goal was to develop cost optimized systems with similar emission and back pressure performance, which meet physical and production requirements. This paper will present the results of a preliminary computer simulation study and the final emission testing of a production vehicle. For the pre-evaluation a numerical simulation model was used to compare the light-off performance of different substrate designs in the cold start portion of the FTP test cycle.
Technical Paper

Inductances of Automotive Electromagnetic Devices

2002-03-04
2002-01-0143
A quantitative relationship between inductances and operating currents of automotive electromagnetic devices was necessary for experimentally assessing the nature of the spark that occurs when a current-carrying conductor in an automobile electrical system is broken. Various automotive electromagnetic devices were obtained, and their inductances and dc operating currents were measured. A plot of the data showed, as expected, that an inverse relationship existed, and regression analysis showed that the relationship could be expressed as where L is inductance in millihenries, and I is current in amperes. This formula, which provided sufficient accuracy for the intended experiments, may be used for estimating the inductance of an automotive electromagnetic device if the current drawn by the device is known.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

1992-02-01
920623
Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Development of a Piston Temperature Telemetry System

1992-02-01
920232
The measurement of piston temperature in a reciprocating engine has historically been a very time-consuming and expensive process. Several conditions exist in an engine that measurement equipment must be protected against. Acceleration forces near 2000 G's occur at TDC in automotive engines at rated speed. Operating temperatures inside the crankcase can range to near 150°C. To allow complete mapping of piston temperature, several measuring locations are required in the piston and data must be obtained at various engine operating conditions. Southwest Research Institute (SwRI) has developed a telemetry-based system that withstands the harsh environments mentioned above. The device is attached to the underside of a piston and temperature data is transmitted to a receiving antenna in the engine crankcase. The key element of this device is a tiny power generator which utilizes the reciprocating motion of the piston to generate electricity thus allowing the transmitter to be self-powered.
X