Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Development of Magnesium Alloyed Front Cover for a Light Duty Diesel Engine

2020-09-25
2020-28-0459
With Continuous increase in demand to reduce weight is forcing Automotive Designers towards finding ways to explore new materials for the Engine components. Currently, Aluminum, Thermoplastics and Composites are widely used in Engine application. This paper examines the potential of a Magnesium alloy Front Cover designed to replace the Cast iron Front Cover in a Light duty Diesel engine. In presented study, a Cast iron Engine front cover is re-designed for Magnesium alloy and components developed. Further Magnesium alloy component tested at vehicle level and it has been demonstrated that a magnesium alloy Front cover can achieve key functional requirements such as Structural durability, Sealing, NVH, while providing substantial Weight saving.
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Numerical Evaluation of Vehicle Orientation and Glazing Material Impact on Cabin Climate and Occupant Thermal Comfort

2017-01-10
2017-26-0262
The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Thermo-Mechanical Analysis Approach for Prediction of Weld Distorion and Residual Stresses on Hydro Form Structure

2016-04-05
2016-01-1352
Residual stresses and thermal distortion are a common phenomenon observed in any welding method. This is a result of non-uniform stresses generated due to highly localized heating at the joint edges, which fuses the base material and leads to considerable amount of changes in mechanical properties. Thus, it is very important to evaluate these effects in any welded structural members before designing for actual loading condition. Therefore, accurate prediction of these stresses and distortion is of critical importance to ensure the in-service structural integrity of welded structures. The recent advancement in Computational simulation and numerical techniques helps in evaluating the weld distortion and residual stresses. The moving heat flux approach and Element birth/death method makes it easier to analyze the weld distortion. This is done with the use of ANSYS® Commercial FE software.
Technical Paper

A New Approach to Vehicle Design and Development Using “HYBRID MULE” for Platform Strategy

2013-09-24
2013-01-2360
In automotive design and development, there are different stages for product design. In this fast changing scenario product design, digital verification of design (CAE), physical validation of the product and launching of the same in short time is important in product development life cycle of any new generation vehicle. This paper proposes a new approach towards development of a green-field platform for commercial vehicles by improving reliability of CAE and thereby reducing the need for prototype testing and hence shortening development cycle and costs - we call it “Hybrid Mule”. This Hybrid Mule has complete design intent under-body and engine-house while upper-body is made of simple representative tubular space frame. FRP skin panels are attached to this space frame to create a safe environment for test-driver. FRP skin also provides early feel of styling in running condition and evaluates basic ergonomics and visibility.
Technical Paper

Effect of Hinge Axis Inclination and Hinge Tolerance on Door Strength under Abuse Loads

2018-04-03
2018-01-0480
As revealed from J. D. Power surveys, today most vehicle owners consider perceived quality as a direct indicator of the vehicle build quality and durability. [5] The problem has become more prominent and noticeable in recent times, due to the desire for reduced cost, reduced weight targets, aesthetic demands, and crash requirements. The performance of the door assembly when subjected to an abuse load of sag and over opening is one such perceived quality indicator which gives the customer the first impression about the engineering and build quality of the vehicle. Door hinge inclination and hinge contact flushness tolerance are the major design parameters affecting this performance. Although these are an important design parameter, the precise quantification of the effect of these design parameters on door performance under abuse loading has remained somewhat elusive.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Test Correlation of an Exhaust System Durability Failure Using Enhanced CAE Approach

2019-01-09
2019-26-0293
Durability of an exhaust system of an automobile is vital to its overall performance as well as customer satisfaction. Existing CAE approach involves simplified modelling & approximations and hence, offers a good scope to model critical details that have a definite bearing on the reliability of its prediction. In this work, an attempt has been made to capture all details such as effect of bolt pre-load on the rubber bushes/isolators, actual 3D model of the rubber bushes/isolators, material property based on measured load-deflection characteristics of the rubber bushes/isolators & contact interactions of mating surfaces that were apparently missing in the existing approach. All such modelling enhancements were incorporated in the model, which was then solved using non-linear solution technique.
Technical Paper

Fiber Reinforced Plastic Durability: Nonlinear Multi-Scale Modeling for Structural Part Life Predictions

2019-01-09
2019-26-0278
OEMs are seeking to develop vehicle light weighting strategies that will allow them to meet weight and fuel economy targets hence increasingly shifting their focus towards incorporating lighter material solutions at mass produced scales. Composites are seen by automotive manufacturers as the solution to lightweight vehicles without affecting their performance. More and more parts are made of short fiber reinforced plastics (SFRP) as well as continuous fiber composites. However, replacing metals by composites requires a new design approach and a clear understanding of the composite behavior. This paradigm however requires a dedicated tool for composite design in order to take into account the specific composite behavior. Traditional design tools are not able to state accurately the composite material behavior and sometime leading to use high safety of factors and lack of confidence in the design.
Technical Paper

Development of Low Cost Lifesaving System for Automotive Vehicles during Road Accidents

2019-11-21
2019-28-2460
Vehicular accidents are life-threatening and result in fatal casualties in developing country such as India. According to estimates, traffic accidents kill more people in India than diseases like Cancer and AIDS. More than 150,000 people are killed every year in traffic accidents in India, which works out to 400 fatalities a day, far higher than developed auto markets like the U.S., which had logged about 40,000 deaths in 2016. The World Health Organization estimates road accidents cost most countries about 3 per cent of their gross domestic product. India being the fastest growing economy will be the world’s third-largest car market after China and the U.S. by 2020, according to automobile researchers. According to research study most of death cause due to not getting help on time to the injured person. Research has proven that if injured person is not found any option of help then they also lose the power to fight such critical situation due to psychological effect.
Technical Paper

Improved Clutch Pedal Ergonomic Position through Adjustable Clutch Pedal Assembly as per Anthropometry

2019-01-09
2019-26-0011
In automotive sector, worlds demanding more riding comfort so accelerator, brake and clutch pedals plays important roles in providing comfort or discomfort to driver. Now days automotive OEMs paying more attentions on providing comfortable ergonomics positions of pedals but it is difficult meet the requirement of each and every (all percentile populations) person because of packaging/manufacturing/costing constraint. Here we are providing the solution to meet the requirement of comfortable ergonomics position as per drivers wish for all kind of persons/drivers (5th percentile to 95th percentile) by providing the adjustable clutch pedal assembly with simple mechanism.
Journal Article

Lightweighting of Automobile Hood Using Multistep Optimization for Composite Material

2019-01-09
2019-26-0168
Emission norms across the world are getting more and more stringent day by day, in pursuit of saving the mother Earth. Automotive industry is quick to respond to this huge challenge. One solution lies in making the vehicles lighter. That's why scope of the lightweight materials is more and more realized and explored during the last decade. One of the front runners in the lightweight material is Carbon Fiber Reinforced Polymer (CFRP). CFRP comes with own challenges in its understanding, designing and engineering. For effective use of the CFRP material, from a design and mass point of view, it has to be optimized in such a way that every section and layup is utilized to its maximum potential. Current paper demonstrates the multi-step optimization approach used in a design and development of car hood. Initial assessment of the hood showed that few attributes were falling short of the requirement targets, and could only be achieved with a mass penalty.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
X