Refine Your Search

Topic

Search Results

Technical Paper

High Performance HVAC Component Development for EV Using 1-D System Simulation

2021-09-22
2021-26-0386
The current paper focuses on the compact HVAC component development for electric passenger vehicles running in countries where the external ambient conditions are harsh. Various previous studies have shown that the energy required for HVAC system alone is about 12-15 percent of the overall vehicle energy demands. Due to very high thermal loads, the Electric Vehicles operating in such countries will obviously fall under the higher HVAC energy consumption band. In addition to the energy demand, the cooling requirements like shorter pull-down time adds further challenges to the HVAC design. Another major challenge being faced by the EV manufacturers is the concerns due to range which has resulted in compact vehicles having less space for HVAC and other subsystem components. The current paper proposes an approach for replacing the conventional air-cooled condenser by liquid-cooled condenser. A liquid-cooled condenser will be much more compact than a conventional condenser.
Technical Paper

Oil Cooler Removal from Light Duty Diesel Engines for Cost Reduction Purpose

2020-09-25
2020-28-0333
Currently automotive design is facing multi facet challenges such as reduction in greenhouse gases, better thermal management, low cost solution to market, etc. Considering these challenges, effort has been taken to improve thermal management of engine while optimizing the cost of engine. Engine Lubrication system consist of Engine oil and oil cooler, which play vital role in thermal management as well as optimization of frictional losses by ensuring proper lubrication and cooling of engine components. For better thermal management of engine, a lubrication system is designed without Oil cooler, proto type made and tested. This paper deals with evaluation of various engine performance parameter and engine temperature with and without oil cooler for light duty Diesel engines on passenger car application. Further solution of Oil cooler removal and Engine cooling improvement with the help of oil change is validated at vehicle level to understand real world behavior of the system.
Technical Paper

Development of Magnesium Alloyed Front Cover for a Light Duty Diesel Engine

2020-09-25
2020-28-0459
With Continuous increase in demand to reduce weight is forcing Automotive Designers towards finding ways to explore new materials for the Engine components. Currently, Aluminum, Thermoplastics and Composites are widely used in Engine application. This paper examines the potential of a Magnesium alloy Front Cover designed to replace the Cast iron Front Cover in a Light duty Diesel engine. In presented study, a Cast iron Engine front cover is re-designed for Magnesium alloy and components developed. Further Magnesium alloy component tested at vehicle level and it has been demonstrated that a magnesium alloy Front cover can achieve key functional requirements such as Structural durability, Sealing, NVH, while providing substantial Weight saving.
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Numerical Evaluation of Vehicle Orientation and Glazing Material Impact on Cabin Climate and Occupant Thermal Comfort

2017-01-10
2017-26-0262
The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Development of Advanced Oil Separator to Give Uniform Oil Separation Efficiency across Engine Speed and Load Conditions

2012-04-16
2012-01-0179
Common rail direct injection technologies have enabled the development of very high power and torque for a given capacity of the engine. These high performance engines have very high brake mean effective pressures and peak firing pressures. These high pressures increase the blow-by gas flow in cylinder crankcase. Vehicle brake assist systems as well as some actuators on engine need the vacuum. The vacuum is generated by the vacuum pump driven by the engine cam shaft or separately as accessory drive. The air pulled for creating the vacuum gets mixed with the lubricating oil. This air mixture with the lubrication oil gets circulated in the blow by circuit. Collectively, blow-by gases and the vacuum pump oil with air carry substantial engine oil particles. These oil particles need to be separated before connecting to the air intake circuit to reduce oil consumption and to reduce exhaust emissions. Generally cyclone type oil mist separation systems are used on the automobile engines.
Technical Paper

A New Approach to Vehicle Design and Development Using “HYBRID MULE” for Platform Strategy

2013-09-24
2013-01-2360
In automotive design and development, there are different stages for product design. In this fast changing scenario product design, digital verification of design (CAE), physical validation of the product and launching of the same in short time is important in product development life cycle of any new generation vehicle. This paper proposes a new approach towards development of a green-field platform for commercial vehicles by improving reliability of CAE and thereby reducing the need for prototype testing and hence shortening development cycle and costs - we call it “Hybrid Mule”. This Hybrid Mule has complete design intent under-body and engine-house while upper-body is made of simple representative tubular space frame. FRP skin panels are attached to this space frame to create a safe environment for test-driver. FRP skin also provides early feel of styling in running condition and evaluates basic ergonomics and visibility.
Technical Paper

Effect of Hinge Axis Inclination and Hinge Tolerance on Door Strength under Abuse Loads

2018-04-03
2018-01-0480
As revealed from J. D. Power surveys, today most vehicle owners consider perceived quality as a direct indicator of the vehicle build quality and durability. [5] The problem has become more prominent and noticeable in recent times, due to the desire for reduced cost, reduced weight targets, aesthetic demands, and crash requirements. The performance of the door assembly when subjected to an abuse load of sag and over opening is one such perceived quality indicator which gives the customer the first impression about the engineering and build quality of the vehicle. Door hinge inclination and hinge contact flushness tolerance are the major design parameters affecting this performance. Although these are an important design parameter, the precise quantification of the effect of these design parameters on door performance under abuse loading has remained somewhat elusive.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Numerical Investigation of Engine Thermal Encapsulation and Its Impact on Extended Range Electrical Vehicle (E-REV) Energy Consumption

2019-01-09
2019-26-0123
Because electric vehicles (EVs) do not generate pollutants during usage, and they can potentially rely on energy provided by a selection of renewable sources, they are the focus of much current interest. However, due to the present capabilities of battery technology, the overall range of such a vehicle is limited. Furthermore, once the battery is depleted relatively long recharging times are currently required before the vehicle is available for use again. Extended range electric vehicles (E-REVs) overcome many of the short-comings of EVs by having a ‘range extender’ unit, which consists of an onboard electric generator powered by an internal combustion engine. In this type of powertrain, the engine configuration either used the spark ignition or compression ignition engines. The engine operation in cold-start conditions can have a significant impact on drivability, fuel economy and tailpipe emissions.
Technical Paper

Computational Investigation of Lightweight Aero-Gel Insulation Materials and Gas Filled Panels (GFP) for Improved Occupant Thermal Comfort

2019-01-09
2019-26-0263
Energy efficient HVAC System is getting a significant attention from the automotive industries. By reducing environmental thermal load, it is expected to achieve a vehicle climate control system that requires less AC power on a vehicle while maintaining the occupant thermal comfort. In order to accomplish this, several technologies to reduce the environmental thermal load are required that includes a glazing system with solar reflecting glasses, highly effective thermal insulation materials, and vehicle interior weight reduction strategies. The structure of a vehicle can absorb a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air and the interior trim surface temperature [1].
Technical Paper

Test Correlation of an Exhaust System Durability Failure Using Enhanced CAE Approach

2019-01-09
2019-26-0293
Durability of an exhaust system of an automobile is vital to its overall performance as well as customer satisfaction. Existing CAE approach involves simplified modelling & approximations and hence, offers a good scope to model critical details that have a definite bearing on the reliability of its prediction. In this work, an attempt has been made to capture all details such as effect of bolt pre-load on the rubber bushes/isolators, actual 3D model of the rubber bushes/isolators, material property based on measured load-deflection characteristics of the rubber bushes/isolators & contact interactions of mating surfaces that were apparently missing in the existing approach. All such modelling enhancements were incorporated in the model, which was then solved using non-linear solution technique.
Technical Paper

Fiber Reinforced Plastic Durability: Nonlinear Multi-Scale Modeling for Structural Part Life Predictions

2019-01-09
2019-26-0278
OEMs are seeking to develop vehicle light weighting strategies that will allow them to meet weight and fuel economy targets hence increasingly shifting their focus towards incorporating lighter material solutions at mass produced scales. Composites are seen by automotive manufacturers as the solution to lightweight vehicles without affecting their performance. More and more parts are made of short fiber reinforced plastics (SFRP) as well as continuous fiber composites. However, replacing metals by composites requires a new design approach and a clear understanding of the composite behavior. This paradigm however requires a dedicated tool for composite design in order to take into account the specific composite behavior. Traditional design tools are not able to state accurately the composite material behavior and sometime leading to use high safety of factors and lack of confidence in the design.
Technical Paper

Replacing Twin Electric Fan Radiator with Single Fan Radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce - Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Optimization of Bio-Diesel Fuel Filter Size Media and Configuration for Longer Service Interval

2019-11-21
2019-28-2391
Bio diesel is one of the most promising fuel which can not only replace the conventional fuels but also environment friendly in terms of Greenhouse gases emission. Adaptation of Bio diesel comes with reduced maintainability and high maintenance cost. Blends of biodiesel and conventional diesel are most commonly used in automotive diesel engines. Biodiesel is most popular choice as an alternate fuel of fossil diesel due to its easy availability, eco-friendly nature and minimum change in existing diesel engine for retro fitment. In this paper efforts have been taken to optimize the life of Fuel filter for bio diesel application. For improving Fuel filter life, modifications carried out in Fuel filter media, size and configuration. Further, Fuel filter tested on Engine test bed and Vehicle to establish the life of filter in real world usage condition. Testing Results were compared with existing diesel fuel filter.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for Better Fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it does not only account for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, volumetric efficiency and thermal efficiency. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

Importance and Contribution of Alternate Fuels in India’s Green Mobility Story

2019-11-21
2019-28-2376
Indian automotive industry has witnessed never-seen-before push towards Green mobility from the Government of India (GOI). GOI has maintained a firm stature while leap-frogging from BS-IV to BS-VI and has backed up its intent with equally firm actions of providing the facilities, infrastructure and necessary support to industry. After a lot of initial resistance, the Auto manufacturers have taken up the challenge and are well paced towards meeting the target of 1st April, 2020. Due to many aspects such as commercial viability, wide range of expectation from different type of customer segments e.g. 2-wheeler, 3-wheelers, SCV, Light & MHCV and passenger car segments etc. the overall landscape of market in terms of product segmentation, Diesel-Petrol share pattern is poised to change. Parallel to this development, a wave of electric vehicle enthusiasts has hit the world which boasts of being the ultimate solution towards Green mobility.
Technical Paper

Performance Optimization of Electronically Controlled Hydraulic Fan Drive (HFD) Used in Commercial Application

2016-04-05
2016-01-0182
Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
Journal Article

NVH Full Vehicle Development - Virtual Simulation Process for Low Frequency Structure-Borne Regions

2020-04-14
2020-01-1266
NVH (Noise, Vibration and Harshness) is a key attribute in Vehicle development. Refined vehicle enhances customer’s perception and also the brand image. Most of the OEMS have well-articulated NVH Development process which is a part of the Product development Cycle (PDC). The need for such process is essential to identify the inherent weakness or threats at earlier stage. And so the mitigation process need not warrant deviation or protection of resources, which would be a bottleneck at later stage. NVH is complex phenomena which deals with structure borne and airborne sources. So a NVH compliant vehicle is the product of resources which includes the skilled manpower, process and computational infrastructure. The stress for NVH front loading has gained traction in Global OEMS, to deliver “First Time Right“ NVH products. Full Vehicle NVH (VNVH) simulation is one of the complex virtual methods, done to understand and mitigate the inherent weakness of the systems and integration.
X