Refine Your Search

Topic

Author

Search Results

Journal Article

A Numerical and Experimental Evaluation of Open Jet Wind Tunnel Interferences using the DrivAer Reference Model

2016-04-05
2016-01-1597
The open jet wind tunnel is a widespread test section configuration for developing full scale passenger cars in the automotive industry. However, using a realizable nozzle cross section for cost effective aerodynamic development is always connected to the presence of wind tunnel effects. Wind tunnel wall interferences which are not present under open road conditions, can affect the measurement of aerodynamic forces. Thus, wind tunnel corrections may be required. This work contains the results of a CFD (Computational Fluid Dynamics) approach using unsteady Delayed Detached Eddy Simulations (DDES) to evaluate wind tunnel interferences for open jet test sections. The Full Scale DrivAer reference geometry of the Technical University of Munich (TUM) using different rear end shapes has been selected for these investigations.
Technical Paper

Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process

2020-03-10
2020-01-5013
Development processes for modern combustion engines already make substantial use of more or less sophisticated simulation approaches. The enhancement of computational resources additionally allows the increasing use of simulation tools in terms of time-consuming three-dimensional CFD approaches. In particular, the preliminary estimation of feasible operating ranges and strategies requires a vast multitude of single simulations. Here, multi-zone simulation approaches incorporate the advantages of comparably short simulation durations. Nevertheless, the combination with more detailed sub-models allows these rather simple modeling approaches to offer considerable insight into relevant engine operation phenomena. In the context of combustion process development, this paper describes a phenomenological model approach for the prediction of operating point characteristics of a dual-fuel pilot injection combustion process.
Technical Paper

Volume of Fluid vs. Cavitation CFD-Models to Calculate Drag Torque in Multi-Plate Clutches

2020-04-14
2020-01-0495
Wet-running multi-plate clutches and brakes are important components of modern powershift gearboxes and industrial powertrains. In the open stage, drag losses occur due to fluid shear. The identification of drag losses is possible by experiment or CFD-simulation. For the calculation of the complex fluid flow of an open clutch, CFD-approaches such as the volume of fluid (vof) method or the Singhal cavitation model are applicable. Every method has its own specific characteristics. This contribution sets up CFD-calculation models for different clutches with diverse groove designs. We present results of calculations in various operating conditions obtained from the Singhal cavitation model and the vof method. The usage of modern commercial CFD-Tools (Simerics MP+) results in short calculation times.
Technical Paper

Experimental and Numerical Investigations for Analysis of Temperature Rise on the Traction Contact Surface of Toroidal Cvts

2009-06-10
2009-01-1661
Temperature rise in traction contact areas is one important factor that influences traction coefficient. For examining the influence of temperature rise on the traction coefficient, it is necessary to first clarify temperature rise in the traction contact area. In this article, temperature rise in the traction contact areas is discussed in three major parts. First, measured temperature distributions on the traction contact surface under conditions of high rolling speed and minute amounts of sliding and spinning, such as those which are found in a toroidal CVT, using a twin-disc test machine and thin-film platinum sensors are shown. Second, the above experimental results are compared with results from a traction analysis program (REIB99). Characteristics of calculated results were qualitatively in good agreement with measured results.
Technical Paper

Tire and Car Contribution and Interaction to Low Frequency Interior Noise

2001-04-30
2001-01-1528
A joint study was conducted between BMW and Goodyear with the objective of analysing the cause and identifying methods to reduce the structure-borne interior noise in a vehicle driving on rough road surfaces. A vibro-acoustic characterization of the car was performed by measuring the car vibro-acoustic transfer functions and by using a transfer path analysis technique to identify the main suspension parts affecting the interior noise at target frequencies. The vibration transmissibility characteristics of the tire were measured and also simulated by Finite Element in [1-200Hz] frequency range. The vibro-acoustic interaction between the tire and car sub-systems was examined. A Finite Element sensitivity analysis was used to define and build new prototype tires. A 3dB(A) interior noise improvement was obtained with these new tires at target frequencies.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

The New BMW Climatic Testing Complex - The Energy and Environment Test Centre

2011-04-12
2011-01-0167
The Energy and Environment Test Centre (EVZ) is a complex comprising three large climatic wind tunnels, two smaller test chambers, nine soak rooms and support infrastructure. The capabilities of the wind tunnels and chambers are varied, and as a whole give BMW the ability to test at practically all conditions experienced by their vehicles, worldwide. The three wind tunnels have been designed for differing test capabilities, but share the same air circuit design, which has been optimized for energy consumption yet is compact for its large, 8.4 m₂, nozzle cross-section. The wind tunnel test section was designed to meet demanding aerodynamic specifications, including a limit on the axial static pressure gradient and low frequency static pressure fluctuations - design parameters previously reserved for larger aerodynamic or aero-acoustic wind tunnels. The aerodynamic design was achieved, in-part, by use of computational fluid dynamics and a purpose-built model wind tunnel.
Technical Paper

Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation

2017-03-28
2017-01-0543
This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
Technical Paper

A New Phenomenological Approach to Simulate the Injection Rate of a Diesel Solenoid Valve Injector

2016-10-17
2016-01-2232
This paper presents a phenomenological and semi-empirical simulation model to predict the injection rate of a diesel solenoid valve injector based on a few injection quantity measurements and indications (EMI). The approximate injection rate will be used as the input data for a subsequent model, which simulates the rate of heat release (ROHR). The injection rate model encompasses algebraic relations and differential equations deviating from the equations of motion and conservation, which describes the characteristic processes in the injector by using modular submodules. The process and its assumptions are explained step by step for each submodule. In addition, the injection rate predictions are presented and compared with experimental results arising from the selected reference solenoid valve injector.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
Technical Paper

On the Different Contributions of Flexible Elements to the Structural Noise of Refrigeration Compressors

2022-06-15
2022-01-0983
Air conditioning acoustics have become of paramount importance in electric vehicles, where noise from electromechanical components is no longer masked by the presence of the internal combustion engine. In a car HVAC systems, the coolant compressor is one of the most important sources in terms of vibration and noise generation. The paper, the generated structural noise is studied in detail on a prototype installation, and the noise transmission and propagation mechanisms are analyzed and discussed. Through ”in situ” measurements and virtual point transformation, the rotor unbalance forces and torque acting within the component are identified. The dynamic properties of the rubber mounts, installed between the compressor and its support, are identified thanks to matrix inversion methods. To assess the quality of the proposed procedure, the synthesized sound pressure level is compared with experimental SPL measurements in different operational conditions.
Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Data Reduction in Automotive Multiplex Systems

1994-03-01
940135
Increasing demand for utilities like navigation systems or user-defined electronic phonebooks on one hand and sophisticated engine and gear controls on the other hand leads to growing bus load between distributed local control units. This paper shows the benefits and the characteristics of various state of the art data-compression algorithms and their impact on typical automotive multiplex dataclasses. The evaluation and optimization of promising algorithms can be done via a proposed “communications prototyping”-approach. The hardware/software components of such a rapid prototyping package are outlined. Finally, first performance results of suitable data-compression measures are presented.
Technical Paper

Testing Automotive Systems Modeled by Finite State Machines

1994-03-01
940136
The use of micro controllers in automotive systems renders the coordination of about 150 actors (70 electric motors, 15 magnetic valves and 50 relays). The resulting complexity of those systems as well as the requested zero defects demands time consuming testing. This work describes a method of performing test-scenarios, starting from a zero defect running specification, modeled by finite state machines. The test-scenarios are intended to determine whether a given system meets all specification requirements. First, a kind of structured modelling reactive automotive systems is deduced. Next, some important test selection methods, developed for the case the specification is given in the form of a finite state machine, are considered. Finally, a procedure and method for performing minimized complete test-scenarios for automotive systems are presented.
Technical Paper

Material Choice and Design of Automotive Plastic Parts Under the Aspects of Recycling

1995-10-01
951847
A lot of very valuable information has already been gained in the process of dismantling, assorting and reconditioning plastic parts on old cars, in reconditioning defective plastic parts from workshops, and in the use of reject parts from production. This know-how is now applied primarily to increase the use of recycled plastics and to optimise the composition and design of future plastic components in the interest of recycling, since further development in these areas is essential in order to establish economically stable material cycles functioning properly in the long term. The present paper describes the most important criteria through which the materials and designs chosen affect the processes and principles of recycling in the case of plastic parts and components.
Technical Paper

On-Line Analysis of Formaldehyde and Acetaldehyde in Non-Stationary Engine Operation Using Laser Mass Spectrometry

1996-05-01
961084
Time-resolved concentrations of formaldehyde and acetaldehyde in the exhaust gas have been investigated during transient motor operation, such as sudden change of speed and load, misfiring and switching off the fuel mixture control. To this purpose, a new laser mass spectrometer has been applied which is capable of measuring the concentrations of individual exhaust compounds with 1 ppm sensitivity at a sampling rate of 50 Hz corresponding to a sampling period of 20 ms. At sudden speed changes, high concentrations of aldehydes are observed, in particular during the phase of decreasing speed, i.e. after closing the throttle valve.
X