Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

KNOCK Detection with Series Cylinder Pressure Sensors

2020-04-14
2020-01-1143
Current legal requirements based on new driving cycles like WLTP or RDE focus on elevated power and torque from the engine. The gear ratios are chosen so as to permit low engine speeds to reduce fuel consumption and consequently CO2 emissions by shifting the operating point to higher loads with reduced throttling and friction losses at low engine speeds. To achieve the required acceleration values the engine tends to be operated more frequently close to its power and torque limits. Thus, the knock occurring at the load limits will increase in significance. Today, in series production, knock is detected via structure-borne sound sensors and eliminated via retarded ignition. New low-cost in-cylinder pressure sensors (ICPS) suitable for series-production now permit evaluation of every single combustion cycle, thus detecting knock in the engine control unit (ECU) at all speed and load ratios independent of parasitic noise.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Technical Paper

Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process

2020-03-10
2020-01-5013
Development processes for modern combustion engines already make substantial use of more or less sophisticated simulation approaches. The enhancement of computational resources additionally allows the increasing use of simulation tools in terms of time-consuming three-dimensional CFD approaches. In particular, the preliminary estimation of feasible operating ranges and strategies requires a vast multitude of single simulations. Here, multi-zone simulation approaches incorporate the advantages of comparably short simulation durations. Nevertheless, the combination with more detailed sub-models allows these rather simple modeling approaches to offer considerable insight into relevant engine operation phenomena. In the context of combustion process development, this paper describes a phenomenological model approach for the prediction of operating point characteristics of a dual-fuel pilot injection combustion process.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

Experiments and Simulation of Hydraulic Cam Phasing Systems

2008-04-14
2008-01-1357
In this work, the dynamics of hydraulic cam phasing systems are analyzed. First there will be introduced an experimental test rig, which is used to analyze the dynamical behavior of the cam phasers. The examined cam phaser, which operates like a slewing motor, is supplied with conditioned oil that matches real engine operation points. Secondly, a modular simulation approach for the cam phasing system and the whole valve train is presented. Additionally parameter studies are shown.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

The Application of Virtual Engine in a PSA 1.41 SI Engine

2010-10-06
2010-36-0153
Nowadays, due to the high competitiveness in the automotive market, the car manufacturers and the engine developers are concentrating as many efforts as possible in order to diminish the lead-time to production and to promote cost reductions of their engine developments. As a consequence, many systems and component tests are being substituted by numerical simulations, allowing a significant reduction in the amount of engine and bench tests. The integration of individual numerical simulation tools generates the philosophy of Virtual Engine Development, which is based on the concept of simulating as much as possible the entire engine as well as its components behaviors. This paper presents the application of Virtual Engine Development (VED) in a PSA 1.4l SI engine development. Theoretical results of engine performance as well as powercell components behavior such as piston, rings, conrod, bearings, liner, engine block and cylinder head, among others, are presented and discussed.
Technical Paper

Noise analysis and modeling with neural networks and genetic algorithms

2000-06-12
2000-05-0291
The aim of the project is to reliably identify the set of constructive features responsible for the highest noise levels in the interior of motor vehicles. A simulation environment based on artificial intelligence techniques such as neural networks and genetic algorithms has been implemented. We used a system identification approach in order to approximate the functional relationship between the target noise series and the sets of constructive parameters corresponding to the cars. The noise levels were measured with a microphone positioned on the driver''s chair, and corresponded to a variation of the engine rotation of 600-900 rot/min. The database includes 45 different cars, each described by vectors of 67 constructive features.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Optical investigation of injection and combustion in a small direct injection diesel engine

2001-09-23
2001-24-0018
A new phenomenological model of injection and auto-ignition is established in a 4-cylinder DI diesel engine of the production size class equipped with an inclined 5 holes injector. Measurements are performed at representative engine conditions for partial load. The penetration of the liquid phases is visualized in the whole combustion chamber by simultaneous Laser-Induced Fluorescence (LIF) and Mie scattering techniques. The autoignition and combustion are analyzed by a time-resolved direct imaging of the chemiluminescence process. Experiments based on the correlation of two separated images of the combustion phenomena in a single cycle have allowed a detailed comprehension of spatial and temporal description of the autoignition and reaction zones development. Several autoignition sites are revealed in the vicinity of the injector nozzle. The reaction zone is shown to develop independently and then to merge to a unique one in the whole combustion chamber.
Technical Paper

Exhaust - Intake Manifold Model for Estimation of Individual Cylinder Air Fuel Ratio and Diagnostic of Sensor - Injector

2003-03-03
2003-01-1059
An individual cylinder AFR estimator using a single proportional oxygen sensor (UEGO) situated at the confluence point of the exhaust manifold has previously been described ([1],[2]). As this model is nonlinear, it proposes a linear slicing by zone [3], enabling it to apply the estimator to the entire range of engine speeds. However, several problems remain; the model [3] is complicated and therefore difficult to program in an electronic engine control, the model is no longer valid with the ageing of sensors, injectors, or the motor, it is impossible to diagnostic the defaulting organ or one which deviates. The work set out in this article describes a model, and the conditions for its identification, which resolve these. The resultats obtained on engine tests show that the model is robust, precise and capable of estimating cylinder AFR as well as diagnosticing an injector or UEGO sensor deviation.
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Technical Paper

Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation

2017-03-28
2017-01-0543
This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Local Gaussian Process Regression in Order to Model Air Charge of Turbocharged Gasoline SI Engines

2016-04-05
2016-01-0624
A local Gaussian process regression approach is presented, which allows to model nonlinearities of internal combustion engines more accurate than global Gaussian process regression. By building smaller models, the prediction of local system behavior improves significantly. In order to predict a value, the algorithm chooses the nearest training points. The number of chosen training points depends on the intensity of estimated nonlinearity. After determining the training points, a model is built, the prediction performed and the model discarded. The approach is demonstrated with a benchmark system and air charge test bed measurements. The measurements are taken from a turbocharged SI gasoline engine with both variable inlet valve lift and variable inlet and exhaust valve opening angle. The results show how local Gaussian process regression outmatches global Gaussian process regression concerning model quality and nonlinearities in particular.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
X