Refine Your Search

Topic

Search Results

Technical Paper

Universal Splice Machine

2007-09-17
2007-01-3782
There is an increasing demand in the aerospace industry for automated machinery that is portable, flexible and light. This paper will focus on a joint project between BROETJE-Automation and Boeing called the Universal Splice Machine (USM). The USM is a portable, flexible and lightweight automated drilling and fastening machine for longitudinal splices. The USM is the first machine of its kind that has the ability not only to drill holes without the need to deburr, (burrless drilling) but also to insert fasteners. The Multi Function End Effector (MFEE) runs on a rail system that is mounted directly on the fuselage using a vacuum cup system. Clamp up is achieved through the use of an advanced electromagnet. A control cart follows along next to the fuselage and includes an Automated Fastener Feeding System. This paper will show how this new advancement has the capabilities to fill gaps in aircraft production that automation has never reached before.
Technical Paper

Development of Portable and Flexible Track Positioning System for Aircraft Manufacturing Processes

2007-09-17
2007-01-3781
The Boeing Company has recently developed a portable positioning system based upon its patented flexible vacuum track technology, in support of its commitment to lean manufacturing techniques. The positioning system, referred to as Mini Flex Track, was initially developed as an inexpensive drilling system that minimizes machine setup time, does not require extensive operator training due to its simple user interface, is general purpose enough to be used in varying airplane applications, and meets strict accuracy requirements for aircraft manufacturing. The system consists of a variable length vacuum track that conforms to a range of contours, a two-axis numerically-controlled positioning carriage that controls machine motion, an additional rail perpendicular to the vacuum rail that provides transverse motion, and an end effector that can perform various tasks.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

2003-07-07
2003-01-2519
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To predict ITCS performance and address flight issues, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW® programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and it was validated in 2003. Even before complete validation the facility was used to address flight issues, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant.
Technical Paper

An Integrated Human Modeling Simulation Process for the International Space Station, Intra-Vehicular Activity

2001-09-11
2001-01-3035
Defining a process for integrating human modeling within the design and verification activities of the International Space Station (ISS) has proven to be as important as the simulations themselves. The process developed (1) ensured configuration management of the required digital mockups, (2) provided consistent methodology for simulating and analyzing human tasks and hardware layout, (3) facilitated an efficient method of communicating design requirements and relaying satisfaction of contract requirements, and (4) provided substantial cost savings by reducing the amount of late redesign and expensive mockup tests. Human simulation is frequently the last step in the design process. Consequently, the influence it has on product design is minimal and oftentimes being used as a post-design verification tool.
Technical Paper

Experimental Study of Hole Quality in Drilling of Titanium Alloy (6AL-4V)

2002-04-16
2002-01-1517
This paper presents the experimental study of hole quality parameters in the drilling of titanium alloy (6Al-4V). Titanium alloy plates were drilled dry using three types of solid carbide drills i.e. 2-flute helical twist drill, straight flute and three-flute drill. The objective was to study the effects of process parameters like feed rate, speed and drill bit geometry on the hole quality features. Typical hole quality features in a drilling process are the hole quality measures such as surface roughness, hole diameter, hole roundness and burr height. The results indicate that proper selection of speed, feed rate, and drill geometry can optimize metal removal rate and hole quality.
Technical Paper

Radial and Tangential Forces, Tool Motion, and the Formation of Lobed Holes in Drilling

2002-09-30
2002-01-2637
Out-of-round holes are formed as a result of tool motion during drilling. Tool vibration is driven by radial and tangential forces on the primary and secondary cutting edges. These forces in turn depend on the chip loads on each cutting edge, which in turn depend on the position of the tool at the current time and at the time of the previous tooth passage. A preliminary analysis based on balancing the cutting forces and the bending forces on the tool, shows that the characteristic frequencies of motion of the tool in the tool frame are near 3/rev, 5/rev, 7/rev etc. (corresponding to 2/rev, 4/rev, 6/rev) in the workpiece frame. These motions are consistent with the tool motion and hole form errors commonly observed on the shop floor. We will describe procedures for measuring the dependence of cutting forces on chip load, the development of simple equations for lateral motion of the tool, and solutions for the tool's behavior.
Technical Paper

One Pass Drilling of Precision Holes in Aircraft Structures

2002-09-30
2002-01-2639
This paper will discuss various drill process techniques developed and implemented at the Boeing facility in St. Louis for producing precision fastener holes in a variety of aircraft materials with a single drill pass operation. In other words, we are not drilling a pilot hole before the drill pass or taking a final ream pass after the drill pass. The benefits include cycle time savings, perishable tool savings, and an improvement in the quality of the holes. The types of drilling processes that will be discussed include power feed drilling using portable power tools. Aspects of the drilling process that will be discussed include cutting tools, coolants, equipment, tooling / drill plates and vacuum collection.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

Development and Deployment of Orbital Drilling at Boeing

2006-09-12
2006-01-3152
Orbital hole drilling technology has shown a great deal of promise for cost savings on applications in the aerospace industry where burr free, high quality holes are a necessity. This presentation will show some of the basic research on orbital drilling development Boeing is doing with the Advanced Manufacturing Research Center at Sheffield University and the deployment of the technology into production programs within The Boeing Company.
Technical Paper

Dual Electric Spindle Retrofit for Wing Riveters

2006-09-12
2006-01-3176
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
Technical Paper

Simulation Enhanced Work Instructions for Aircraft Assemblies

1998-06-02
981861
The Boeing Company is developing and implementing the tools for the 21st Century for product development with their Design Manufacturing and Producibility Simulation (DMAPS) program. DMAPS combines the best of people, hardware and software tools commercially available to develop product and process simulation applications. The DMAPS toolset enhances the process of preparing concept layouts, assembly layouts and build-to-packages. Comprised of an Integrated Product and Process Team (IPPT), DMAPS produces products faster and with higher quality. The result is a process that eliminates costly changes and rework, and provides all IPPT's the tools and training necessary to perform their tasks right the first time. Boeing applies DMAPS tools to a variety of existing and new programs to build more affordable products. Savings goals set forth by the program are shown in Figure 1.
Technical Paper

Simulation Study of a Commercial Transport Airplane During Stall and Post-Stall Flight

2004-11-02
2004-01-3100
As part of NASA’s Aviation Safety and Security Program, a simulation study of a twin-jet transport aircraft crew training simulation was conducted to address fidelity for upset or loss-of-control flight conditions. Piloted simulation studies were conducted to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted in a flaps-up configuration and covered the approach-to-stall, stall and post-stall flight regimes. Qualitative pilot comments and preliminary comparison with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the significant unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified.
Technical Paper

Flight Crew Training - A Total Concept

1971-02-01
710474
To serve the requirements of the operational environment of modern jet aircraft, the flight crew training program should be kept as simple as possible and be consistent with the total information system for aircraft operation of which it is a part. Systematic tools are described which assist the course developer in optimizing the implementation of Specific Behavioral Objectives, allocating learning elements to the most cost effective learning environment, and organizing those learning elements associated with the classroom environment. Included is a discussion on the management systems applied, the development of a Learning Task Analysis, and a systems approach to course organization.
Technical Paper

Flexible Assembly System Implementation

1999-10-06
1999-01-3447
This paper covers issues related to the installation, testing, and production implementation of a large-scale automated wing drilling/fastener installation system. Emphasis is placed on describing the production process, foundation requirements, axes alignment, calibration, testing and implementation. Description will include key hardware features such as the multi-function end effector and spindle end effector. The objective is to convey the complexity of implementing this system as well as reviewing the lessons learned from this experience.
Technical Paper

The Automated NC Mini-Driller

1999-10-06
1999-01-3436
The introduction of a new derivative to an existing aircraft model poses many decisions regarding old versus new. In the case of the introduction of the extended range 767 (the 767-400ER), an entirely new wing design prompted the examination of the then current assembly processes and tooling. The hesitation to build new drill templates for use in the traditional method of second stage wing spar assembly inspired Tool Engineering Management to request the investigation of a low cost automated drilling apparatus. As a result, the Boeing Automated Tools Group and Advanced Integration Technology, Inc. (AIT) developed and implemented mobile numerically controlled mini-drilling machines for post-ASAT I assembly-drilling operations.
Technical Paper

Burr Prevention and Minimization for the Aerospace Industry

1999-06-05
1999-01-2292
Burr research is undeniably highly complex. In order to advance understanding of the process involved several techniques are being implemented. First a detailed and thorough examination of the burr forming process is undertaken. The technique is difficult, intricate and time consuming, but delivers a large amount of vital physical data. This information is then used in the construction of empirical models and, in some case lead to development of FEM models. Finally using the model as a template, related burr formation problems that have not been physically examined can be simulated and the results used to control process planning resulting in the reduction of burr formation. We highlight this process by discussing current areas of research being followed at the University of California in collaboration with Boeing and the Consortium on Deburring and Edge Finishing (CODEF).
Technical Paper

Haptics, Instrumentation, and Simulation: Technologies for Enhanced Hand Drilling Training

1999-06-05
1999-01-2283
A fundamental part of airplane manufacturing involves hand drilling of holes for fasteners (bolts and rivets). The integrity of a fastener depends on the quality of its hole, which must be properly positioned, have a circular diameter of correct dimension, and be free of surface flaws and contaminants. A common method of drilling training is for a student to drill holes under the supervision of an instructor who inspects or measures the holes and makes suggestions for improving technique. This training method has proven to be effective, but it is time-consuming and requires considerable personal attention. We have devised instrumentation to monitor critical parameters (drill orientation and forces) so that a student can receive instantaneous visual feedback. This real-time feedback provides the student a better understanding of the drilling process and allows him or her to quickly make improvements.
X