Refine Your Search

Topic

Author

Search Results

Journal Article

CFD Study of Ventilation and Carbon Dioxide Transport for ISS Node 2 and Attached Modules

2009-07-12
2009-01-2549
The objective of this study is to evaluate ventilation efficiency regarding to the International Space Station (ISS) cabin ventilation during the ISS assembly mission 1J. The focus is on carbon dioxide spatial/temporal variations within the Node 2 and attached modules. An integrated model for CO2 transport analysis that combines 3D CFD modeling with the lumped parameter approach has been implemented. CO2 scrubbing from the air by means of two ISS removal systems is taken into account. It has been established that the ventilation scheme with an ISS Node 2 bypass duct reduces short-circuiting effects and provides less CO2 gradients when the Space Shuttle Orbiter is docked to the ISS. This configuration results in reduced CO2 level within the ISS cabin.
Journal Article

Role of Power Distribution System Tests in Final Assembly of a Military Derivative Airplane

2009-11-10
2009-01-3121
Boeing has contracts for military application of twin engine airplanes generically identified in this paper as the MX airplane. Unlike previous derivatives, the MX airplanes are produced with a streamlined manufacturing process to improve cost and schedule performance. The final assembly of each MX airplane includes a series of integration tests, called factory functional tests (FFTs), which are modified from those of typical commercial versions and verify correctness of equipment installation and basic functionalities. Two airplanes have been through the production line resulting in a number of FFT lessons learned. Addressed are the power distribution lessons learned: 1) the expanded coverage of the basic automated power-on generation system test, 2) the need for a manual wire continuity test, 3) salient features of the power distribution tests, and 4) keys to make first pass power distribution test smooth and successful.
Journal Article

Self-Configuring Hybrid Duct System and Attachment Technologies for Environmental Control Systems

2009-11-10
2009-01-3277
Environmental Control Systems (ECS) ducts on airplanes are primarily fabricated from aluminum or thermoset composites, depending on temperature and pressure requirements. It is imperative to fabricate lightweight, cost effective, durable, and repairable systems with minimal tooling. It is also important that the duct systems are easy to assemble even with alignment issues resulting from structural variations, tolerance accumulation, variation from thermal expansion of different materials, and inherent duct stiffness. These requirements create an opportunity and need for a technology that can address all of these issues, while increasing performance at the same time. This report provides a background on current ECS ducting systems.
Journal Article

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2011-10-18
2011-01-2576
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a “single-truth” architectural framework. The SAVI approach of “Integrate, then Build” provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a “single-truth” reference architectural model.
Technical Paper

Designing Airplane Cabin Noise Treatment Packages using Statistical Energy Analysis

2007-05-15
2007-01-2316
Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
Technical Paper

Modeling Considerations and Stability Analysis of Aerospace Power Systems with Hybrid AC/DC Distribution

2006-11-07
2006-01-3038
The modeling and simulation of electrical power systems has become a primary design tool for the synthesis of aerospace power systems with hybrid AC/DC distribution. Although in the past the use of extensive time domain simulations using detailed models has been favored, the need to study stability and associated phenomena in this type of power systems-having a high penetration of power electronics loads-has transformed the modeling requirements for aerospace applications. This paper explores different modeling aspects required to study both small-signal and large-signal stability in these systems, providing insight into the development of key system component models-variable frequency generators, line-commutated converters, PWM motor drives and constant power loads, as well as the theoretical foundations based on the Generalized Nyquist Criterion and the Lyapunov Direct and Indirect Methods to fully assess the stability conditions of these power systems.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Analysis and Predicted Temperature Control of Crew Quarters added to Node 2 of the International Space Station

2007-07-09
2007-01-3071
Currently scheduled to be delivered to the International Space Station (ISS) in 2009, Crew Quarters (CQs) will be installed in the Node 2 Module. The CQs provide crewmembers with private space, a place to sleep, and minimal storage. Analysis is to be performed to determine if the United States Operational Segment (USOS) Node 2 can maintain temperature between 47°C and 62°C (65°F and 80°F) [units are CCGS with U.S unit in parenthesis] within the CQ. The analysis will concentrate on the nominal hot environmental case. Environmental heat is due to solar heating of the external shell of the ISS. Configurations including both three and four CQs are examined, as well as multiple configurations of the Low Temperature Loop (LTL) that flows through the Node 2 Common Cabin Air Assembly (CCAA). This paper describes the analysis performed to determine if Node 2 will be able to maintain cabin temperature between 47°C and 62°C (65°F and 85°F).
Technical Paper

Liquid Water Content and Droplet Size Distribution Mass Fractions for Wind Milling Engine Fan Blade Ice Accretion Analysis

2007-09-24
2007-01-3291
A procedure for calculating the engine inlet diffuser section liquid water content and mass fractions of liquid water content associated with the water droplet size distribution for wind milling engine ice accretion analysis is presented. Critical fuel reserve calculation for extended twin-engine operation requires the determination of drag increase due to ice accretion on inoperative wind milling engine fan blade and guide vane.
Technical Paper

Verification of Supply Chain Quality for Perishable Tools

2007-09-17
2007-01-3813
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
Technical Paper

Oxygen/Nitrogen Supply and Distribution for the United States On-Orbit Segment of the International Space Station

1997-07-01
972381
The on-orbit oxygen and nitrogen supply for the United States On-Orbit Segment (USOS) of the International Space Station (ISS) is provided in tanks mounted on the outside of the Airlock module. Gasses are supplied, for distribution to users within the USOS, via pressure regulators in the Airlock. The on-orbit storage can be replenished with gas that is scavenged from the Space Shuttle, or by direct replacement of the tanks. The supply and distribution system are described in this paper. The users of the gasses are identified. The system architecture is presented. Operational considerations are discussed.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

2007-01-17
2007-01-3888
The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

Integrated Air Interchange System Performance for Early Internatonal Space Station Assembly Missions

1998-07-13
981588
A multi-element fixed control volume integrated air interchange system performance computer model has been developed and upgraded for the evaluation/assessment of atmospheric characteristics inside the crew compartments of the mated Orbiter and International Space Station (ISS). In order to ensure a safe, comfortable, and habitable environment for all the astronauts during the Orbiter/ISS docked period, this model was utilized to conduct the analysis for supporting the early ISS assembly missions. Two ISS assembly missions #2A and #4A were selected and analyzed.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Integrated Electrical System Testing and Modeling for Risk Mitigation

2008-11-11
2008-01-2897
International Space Station (ISS) Payload Engineering Integration (PEI) organization adopted the advanced computation and simulation technology to develop integrated electrical system models based on the test data of various sub-units. This system model was used end-to-end to mitigate system risk for the integrated Space Shuttle Pre-launch and Landing configurations. The Space Shuttle carries the Multi-Purpose Logistics Module (MPLM), a pressurize transportation carrier, and the Laboratory Freezer for ISS, a freezer rack for storage and transport of science experiments from/to the ISS, is carried inside the MPLM. An end-to-end electrical system model for Space Shuttle Pre-Launch and Landing configurations, including the MPLM and Freezer, provided vital information for integrated electrical testing and to assess Mission success. The Pre-Launch and Landing configurations have different power supplies and cables to provide the power for the MPLM and the Freezer.
Technical Paper

Dynamic Circuit Analysis and Testing for International Space Station Science Experiments

2008-11-11
2008-01-2911
The International Space Station (ISS) Payload Engineering Integration (PEI) organization has developed the critical capabilities in dynamic circuit modeling and simulation to analyze electrical system anomalies during testing and operation. This presentation provides an example of the processes, tools and analytical techniques applied to the improvement of science experiments over-voltage clamp circuit design which is widely used by ISS science experiments. The voltage clamp circuit of Science Rack exhibits parasitic oscillations when a voltage spike couples to the Field-Effect Transistor (FET) in the clamp circuit. The oscillation can cause partial or full conduction of the shunt FET in the circuit and may result in the destruction of the FET. In addition, the voltage clamp circuit is not designed to detect the high current through the FET, and this condition can result in damage to surrounding devices. These abnormal operations were analyzed by dynamic circuit simulation and tests.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

Portable Fastener Delivery and Installation System

2003-09-08
2003-01-2953
The Portable Fastener Delivery System or PFDS, has been developed at the Boeing St. Louis facility to streamline the manual fastener installation process. The PFDS delivers various fasteners, on demand, through a delivery tube to an installation tool used by the operator to install the fasteners in an aircraft assembly. This paper describes the PFDS in its current configuration, along with the associated Huck® International (now Alcoa Fastening Systems) installation tooling, as it is being implemented on the F/A-18E/F Nosebarrel Skinning application. As a “portable” system, the PFDS cart can be rolled to any location on the shop floor it might be needed. The system uses a removable storage cassette to cache many sizes and types of fasteners in the moderate quantities that might be required for a particular assembly task. The operator begins the installation sequence by calling for the particular fastener grip length needed using a wireless control pendant.
X