Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

A Study of Anisotropy and Post-Necking Local Fracture Strain of Advanced High Strength Steel with the Utilization of Digital Image Correlation

2011-04-12
2011-01-0992
The automotive industry has a strong need for lightweight materials capable of withstanding large mechanical loads. Advanced high-strength steels (AHSS), which have high tensile strength and formability, show great promise for automotive applications, yet if they are to be more widely used, it's important to understand their deformation behavior; this is particularly important for the development of forming limit diagrams (FLD) used in stamping processes. The goal of the present study was to determine the extent to which anisotropy introduced by the rolling direction affects the local fracture strain. Three grades of dual-phase AHSS and one high-strength low-alloy (HSL A) 50ksi grade steel were tested under plane strain conditions. Half of the samples were loaded along their rolling direction and the other half transverse to it. In order to achieve plane strain conditions, non-standard dogbone samples were loaded on a wide-grip MTS tensile test machine.
Journal Article

Crashworthiness and Numerical Analysis of Composite Inserts in Vehicle Structure

2012-04-16
2012-01-0049
The objective of this research is to understand the crashworthiness performance of composite inserts in vehicle structure and to improve the numerical model of steel-composite combined structure for providing better prediction in the design process of composite inserts. A simplified steel-composite combined beam structure is used for three-point bending tests. Epoxy-based structural foam and 33% short glass fiber reinforced nylon composite insert are considered as composite fillers in empty sections of double hat-type steel beam structure. Four cases based on the different combination of composite materials are considered. In the series of physical three-point bending tests, the force-displacement (F-D) curves and material behaviors are investigated. The test results show that the composite insert greatly contributes to improve the crashworthiness of beam structure as well as to reduce the vehicle weight.
Journal Article

Analysis of Seat Belt Positioning in Recent NCAP Crash Tests

2013-04-08
2013-01-0460
The objective of this study was to analyze the position of the shoulder belt and adjustable upper anchorage (AUA) relative to the occupant in recent (2011-2012) NHTSA NCAP frontal crash tests. Since 2011, certain changes have been made in the NCAP test procedure. These changes include different Hybrid III occupant sizes as well as variations in the methods for calculating injury risk. One of the most significant changes has to do with thoracic injury risk calculation which was previously associated with chest acceleration and is now based on chest deflection as the measurable parameter. Using the NHTSA NCAP database, as well as other crash test data sources, a comparison was made between the designated upper anchorage position prior to a crash test and the actual position of the belt webbing with respect to the chest deflection measurement potentiometer sub-assembly of the Hybrid III.
Technical Paper

Far-Side Impact Vehicle Simulations with MADYMO

2007-04-16
2007-01-0363
To date, anthropomorphic test devices (ATDs) have not been designed with consideration for human motion in far-side impacts. Previous tests with a cadaver and a BioSID dummy at the Medical College of Wisconsin confirmed that the dummy does not suitably model the human motion. To further evaluate different ATDs in far-side crashes, MAthematical DYnamic MOdeling (MADYMO) was employed. The modeling showed that the motion of a Hybrid III, BioSID, EuroSid1, EuroSID2, or SID2s did not accurately reflect the motion of a human cadaver under the same impact configurations as the cadaver test. The MADYMO human facet model was found to closely reproduce the kinematics of the cadaver test. The effect of varying console designs on occupant kinematics is presented in this paper. The human facet model appears to be a good interim tool for the evaluation of countermeasures in far-side crashes.
Technical Paper

Development of an Intelligent Multimode Speed Adaptation System

2007-04-16
2007-01-1321
According to National Highway Traffic Safety Administration (NHTSA) speed-related traffic fatalities accounted for 31% of total fatalities on U.S. roadways in 2003. Traditional speed control methods suffer from significant shortcomings. Adaptation (ISA) systems hold the promise of safer roadways through improving driver compliance with speed limits. This paper describes the development of a new multi-modal speed adaptation system to be tested in the CISR car-driving simulator. The system is capable of adapting to the driver's driving style and provides appropriate warning for over speeding based on the vehicle speed, speed limit, driver individual preferences, and risk factor. A hierarchical manager module determines the warning strategy. The adequate warning strategy is specific to driving situations and individual characteristics. Modes of warnings being considered include VISUAL, and HAPTIC.
Technical Paper

Evaluating Frontal Crash Test Force-Deformation Data for Vehicle to Vehicle Frontal Crash Compatibility

2008-04-14
2008-01-0813
Vehicle stiffness is one of the three major factors in vehicle to vehicle compatibility in a frontal crash; the other two factors are vehicle mass and frontal geometry. Vehicle to vehicle compatibility in turn is an increasingly important topic due to the rapid change in the size and characteristics of the automotive fleet, particularly the increase of the percentage of trucks and SUVs. Due to the non-linear nature of the mechanics of vehicle structure, frontal stiffness is not a properly defined metric. This research is aimed at developing a well defined method to quantify frontal stiffness for vehicle-to-vehicle crash compatibility. The method to be developed should predict crash outcome and controlling the defined metric should improve the crash outcome. The criterion that is used to judge the aggressivity of a vehicle in this method is the amount of deformation caused to the vulnerable vehicles when crashed with the subject vehicle.
Technical Paper

Development of an Active Steering Control System in a Car Driving Simulator

2009-04-20
2009-01-1290
An active torque control steering system is developed and implemented in a car simulator. The simulator has a comprehensive and accurate full vehicle dynamics and road/environment models. A simple model of the driving simulator’s vehicle was developed and a PID controller, which uses the vehicle’s yaw angle, and position, was designed to control vehicle steering torque. The controller is then integrated with the driving simulator program, emulating the real world conditions. The developed system was tested in various obstacle avoidance and lane change scenarios in the car simulator, and the vehicle was able to avoid the stationary obstacles autonomously.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Occupant Injury Patterns in Side Crashes

2001-03-05
2001-01-0723
This paper presents an analysis of the National Automotive Sampling System (NASS) and the Fatal Accident Reporting Systems (FARS) data for the combined years 1988–97 with respect to side impacts. Accident variables, vehicle variables, occupant variables and their interactions have been considered, with special emphasis on occupant injury patterns. The crash modes considered are car-to-car, car-to-LTV (light trucks and vans) and car to narrow object, with special emphasis on the latter two. This study was undertaken to obtain a better understanding of injury patterns in lateral impacts, their associated causation factors, and to obtain information that will assist in prioritizing crash injury research problems in near side impacts. Of particular interest is the increase in the population of light trucks and vans and their influence on side impact priorities. Conclusions will be drawn regarding the frequency and injury severity of car-to-LTV’s and car to narrow objects.
Technical Paper

A Suitable Platform for Storm Penetration, Risk Analysis for the SPA-10 Aircraft Modification

2016-09-20
2016-01-2043
The SPA-10 project, sponsored by U.S. National Science Foundation, is to acquire and qualify a replacement for the retired T-28 “storm penetration” aircraft previously used to acquire meteorological data to enable understanding and modelling of mid-continent thunderstorms. The National Science Foundation selected the Fairchild A-10 (bailed from the U.S. Air Force) as the platform to be adapted to perform the storm penetration mission to altitudes of eleven kilometers, and funded Naval Postgraduate School’s Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) as prime contractor. An expert panel conducted a review of the SPA-10 project in 2014 and recommended a risk analysis addressing hazards to the aircraft and pilots, such as icing, hail, turbulence and lightning. This paper presents the results of the risk analysis performed in response to this need, including recommended mitigations.
Technical Paper

Effect of Occupant Position and Air Bag Inflation Parameters on Driver Injury Measures

1998-02-23
980637
This paper investigates the effects of driver airbag inflation characteristics, airbag relative position, airbag to dummy relative velocity, and steering column characteristics using a finite element model of a vehicle, air bag, and Hybrid III 50% male dummy. Simulation is conducted in a static test environment using a validated finite element model. Several static simulation tests are performed where the air bag module's position is mounted in a rigid steering wheel and the vertical and horizontal distances are varied relative to the dummy. Three vertical alignments are used: one position corresponds to the head centered on module, another position corresponds to the neck centered on module, and the third position centers the chest on the module. Horizontal alignments vary from 0 mm to 50 mm to 100 mm. All of these tests are simulated using a typical pre-1998 type inflation curve (mass flow rate of gas entering the bag).
Technical Paper

Investigation of Crashworthiness of Structural Composite Components in Frontal and Side NCAP Tests

2013-04-08
2013-01-0650
This paper investigates the crashworthiness of structural composite components in frontal and side crash tests. In addition, the safety benefits of composites applications in future lighter vehicles are studied. The methodology of the research includes two steps: (1) developing a light-weight vehicle based on a current finite element (FE) vehicle using advanced plastics and composites, and (2) evaluating the crashworthiness of the light-weighted vehicle by frontal and side New Car Assessment Program (NCAP) test simulations. An FE model of a 2007 Chevrolet Silverado, which is a body-on-frame pickup truck, was selected as the baseline vehicle for light-weighting. By light-weighting components in the Silverado, the vehicle weight was reduced 19%. As a result, the content of plastics and composite in the light-weighted vehicle was 23.6% of the total weight of the light-weight vehicle.
Journal Article

A Study of the Rear Seat Occupant Safety using a 10-Year-Old Child Dummy in the New Car Assessment Program

2008-04-14
2008-01-0511
The National Highway Traffic Safety Administration (NHTSA) conducted a total of 28 frontal crashes in the New Car Assessment Program (NCAP) involving the 10-year-old child Hybrid III dummy. The 10-year-old child dummy was in the rear seat. All types of vehicles (passenger cars, sport utility vehicles, vans and pick-up trucks) were tested to assess the effect of restraint systems such as booster and pretensioner on the rear seat occupant. In this study, the readings of the 10-year-old child dummy in rear-left and rear-right seat positions are examined. The authors apply a possible 5 star rating system, based on head and chest readings of the 10-year-old dummy. The paper also assesses the safety performance of rear seat occupants and the effect of the restraint systems on a child in the rear seat. This paper suggests that a star rating for rear seat occupants is independent of the present ratings for the driver and front adult passenger in NCAP.
Technical Paper

Protection of Rear Seat Occupants in Frontal Crashes, Controlling for Occupant and Crash Characteristics

2009-11-02
2009-22-0003
In this study, the level of protection offered to rear seat occupants in frontal crashes is investigated. The Fatality Analysis Reporting System (FARS) and National Automotive Sampling System Crashworthiness Data System (NASS CDS) databases were used for the analyses. The investigation focused on: 1- estimating the fatality protection effectiveness of the rear seat position relative to the right front seat position, using the double paired comparison method, 2- evaluating the effect of control group selection method on effectiveness predictions, and 3- identifying trends in rear seat occupant protection over model years of vehicles. By applying a uniform control group to the double paired comparison analysis of FARS data, this study suggests that all ages of occupants are safer in the rear seat than in the right front seat. Effectiveness estimates ranged from 5.9% to 82% for different age groups of occupants.
X