Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Technical Paper

Development of RC-IGBT with a New Structure That Contributes to Both Reduced Size of Power Control Unit and Low Loss in Hybrid Electric Vehicles

2020-04-14
2020-01-0596
In order to improve the fuel efficiency of Hybrid Electric Vehicles (HEVs), it is necessary to reduce the size and power loss of the HEV Power Control Units (PCUs). The loss of power devices (IGBTs and FWDs) used in a PCU accounts for approximately 20% of electric power loss of an HEV. Therefore, it is important to reduce the power loss while size reduction of the power devices. In order to achieve the newly developed PCU target for compact-size vehicles, the development targets for the power device were to achieve low power loss equivalent to its previous generation while size reduction by 25%. The size reduction was achieved by developing a new RC-IGBT (Reverse Conducting IGBT) with an IGBT and a FWD integration. As for the power loss aggravation, which was a major issue due to this integration, we optimized some important parameters like the IGBT and FWD surface layout and backside FWD pattern.
Technical Paper

Exhaust Gas Sensor with High Water Splash Resistant Layer for Lower Emission

2020-04-14
2020-01-0565
Increasingly stringent regulations call for the reduction of emissions at engine startup to purify exhaust gas and reduce the amount of CO2 emitted. Air-fuel ratio (A/F) sensors detect the composition of exhaust gas and provide feedback to control the fuel injection quantity in order to ensure the optimal functioning of the catalytic converter. Reducing the time needed to obtain feedback control and enabling the restriction-free installation of A/F sensors can help meet regulations. Conventional sensors do not activate feedback control immediately after engine startup as the combination of high temperatures and splashes of condensed water in the exhaust pipe can cause thermal shock to the sensor element. Moreover, sensors need to be installed near the engine to increase the catalyst reaction efficiency. This increases the possibility of water splash from the condensed water in the catalyst.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Technical Paper

Numerical Analysis of Flow in the Induction System of an Internal Combustion Engine -Multi-Dimensional Calculation Using a New Method of Lines

1990-02-01
900255
Multi-dimensional code has been developed to simulate the effect of geometry on mass flow rate and flow pattern in the induction system of an internal combustion engine. The unsteady compressible Navier-Stokes equations in general curvilinear coordinates are solved by a new method of lines. In the method of lines, the governing equations are spatially discretized by a finite difference approximation and the resulting system of ordinary differential equations is integrated. As a time integration scheme, we newly propose to use the rational Runge-Kutta scheme in order to efficiently simulate the flows in the induction system. The domain-decomposition technique is introduced so that body-fitted structured grid can be easily generated for such complex geometry as a real intake port shape. The present code is applied to 2 and 3 dimensional steady flows in intake port/cylinder assembly with a valve.
Technical Paper

Development of Sealing Material Used in the Body Welding Shop

2007-04-16
2007-01-0418
1 The principal characteristics required of sealing materials used in the body shop have focused on their adhesion to oily steel sheets and quick curing performance. Means for attaining these characteristics have been narrowed down to a basic resin system and a curing system. Various techniques have been studied to ensure proper anti-corrosion performance at the sealer application boundaries and thin application areas. They include the addition of anti-corrosion fillers, the provision of conductivity (through electro-deposition), and the application of a micro foam film over the application boundaries. Thus, prospects for attaining the same level of anti-corrosion performance as existing materials have been achieved.
Technical Paper

The Development of Toyota Fantasy Print System

1998-09-29
982344
Recently, the demands of vehicle owners have become more diversified. This is particularly true in the paint appearance of the vehicle. Responding to these demands Toyota has developed an ink jet painting system, Toyota Fantasy Print System. This system can illustrate practically any picture which the customer desires. The system utilized a subtractive method of paint mixture which mixes or piles up these four permeable inks. The development of durable ink as well as equipment which can efficiently and effectively apply the ink onto the required contoured surface.
Technical Paper

Development of Anti Scratch Clear Coat

2008-04-14
2008-01-1461
“Anti-scratch performance” is the highest in customer's needs of paint. To achieve anti-acid and anti-scratch performance, we selected 2K-urethane because of a high degree of freedom in paint design. In addition, we have done a precise molecular design of the acrylic polyol and the isocyanate. As a result, “a highly durable, soft, fine-crosslinking paint film” was achieved, and “anti-scratch clear coat” that surpassed the current clear coats was developed.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Development of Low Sulfated Ash and Fuel Economy Diesel Engine Oil

2009-06-15
2009-01-1845
A low sulfated ash (S.Ash) DL-1/C2 0W-30 diesel engine oil with improved fuel economy has been developed to meet the PM targets outlined in the Euro 5 emissions standards and to help achieve the voluntary European CO2 target of 140 g/km. The newly developed engine oil is an effective solution to the trilemma (triple probrem) of reliability (high detergency and high anti wear), low S.Ash, and fuel economy, achieving a fuel economy improvement of 2% and reducing CO2 emissions by 3 g/km.
Technical Paper

Development of High Performance Three-Way-Catalyst Technology to Lower NOx Emission

2009-04-20
2009-01-1398
One primary result of the reduction of platinum group metals (PGM) within a catalytic converter is the decline in NOx conversion efficiency. This paper hypothesizes that the primary factor of this decline to be hydrocarbon (HC) poisoning. To maintain high NOx conversion efficiency as the PGM reduces, Rh activation improvement becomes significant to overcome the HC poisoning. Analysis of the Rh deterioration mechanism found that it is effective to separately arrange Rh and CeO2 on the converter, avoiding the Rh deactivation. By this improvement, we improved the catalyst activity at less than 25% of the original Rh loading.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
X