Refine Your Search

Topic

Author

Search Results

Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 3 – Results and Validation

2009-04-20
2009-01-0938
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance on in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during real-world operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to more conventional, laboratory based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA).
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Technical Paper

Detection of Catalyst Failure On-Vehicle Using the Dual Oxygen Sensor Method

1991-02-01
910561
On-vehicle proof-of-concept testing was conducted to evaluate the ability of the dual oxygen sensor catalyst evaluation method to identify serious losses in catalyst efficiency under actual vehicle operating conditions. The dual oxygen sensor method, which utilizes a comparison between an upstream oxygen sensor and an oxygen sensor placed downstream of the catalyst, was initially studied by the Environmental Protection Agency (EPA) under steady-state operating conditions on an engine dynamometer and reported in Clemmens, et al. (1).* At the time that study was released, questions were raised as to whether the technological concepts developed on a test fixture could be transferred to a vehicle operating under normal transient conditions.
Technical Paper

Recommended I/M Short Test Procedures for the 1990's: Six Alternatives

1991-02-01
910338
This report describes in detail new test procedures designed to minimize test variability, and the resulting false failures of new technology vehicles. There are currently six promulgated test procedures. The new procedures differ from the current ones in that they include controlled preconditioning, second chance testing, and sampling and score selecting algorithms. These are intended to minimize the variability in testing conditions and thereby reduce false failures of clean vehicles. High emitting vehicles which have been escaping detection with the current test procedures may continue to do so under the new ones. It is EPA's hope that these new procedures will improve the possibility of using more stringent cutpoints and non-idle test modes in the future to detect these high emitters by eliminating the additional false failures that would otherwise occur by instituting such measures under current procedures.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

Detection Reliability Study for Interlayer Cracks

1998-11-09
983125
The Federal Aviation Administration Airworthiness Assurance Nondestructive Inspection Validation Center (FAA-AANC) is currently conducting a detection reliability study pertaining to the detection of cracks in multi-layered aluminum sheets. This paper describes the design, production and characterization of test specimens that are currently being used to conduct third layer Probability of Detection (PoD) experiments. Pertinent aspects of the lap splice joints for Boeing 737 aircraft, Line Numbers 292 - 2565 are included in the test specimens. A preliminary analysis of the data indicates that for some inspectors, traditional measures of performance - in particular PoD curves based on maximum likelihood fit to two-parameter lognormal curve - may be misleading.
Technical Paper

Improving Aircraft Composite Inspections Using Optimized Reference Standards

1998-11-09
983120
The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft.
Technical Paper

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

2010-04-12
2010-01-0799
The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads.
Technical Paper

Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

2003-06-23
2003-01-2253
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficient personal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warmup phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including ¼ power in 30 s, and ½ power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

Test Results and Modeling of the Honda Insight using ADVISOR

2001-08-20
2001-01-2537
The National Renewable Energy Laboratory (NREL) has conducted a series of chassis dynamometer and road tests on the 2000 model-year Honda Insight. This paper will focus on results from the testing, how the results have been applied to NREL's Advanced Vehicle Simulator (ADVISOR), and how test results compare to the model predictions and published data. The chassis dynamometer testing included the FTP-75 emissions certification test procedure, highway fuel economy test, US06 aggressive driving cycle conducted at 0°C, 20°C, and 40°C, and the SC03 test performed at 35°C with the air conditioning on and with the air conditioning off. Data collection included bag and continuously sampled emissions (for the chassis tests), engine and vehicle operating parameters, battery cell temperatures and voltages, motor and auxiliary currents, and cabin temperatures.
Technical Paper

Effect of Solar Reflective Glazing on Ford Explorer Climate Control, Fuel Economy, and Emissions

2001-10-16
2001-01-3077
The energy used to air condition an automobile has a significant effect on vehicle fuel economy and tailpipe emissions. If a small reduction in energy use can be applied to many vehicles, the impact on national fuel consumption could be significant. The SCO3 is a new emissions test conducted with the air conditioner (A/C) operating that is part of the Supplemental Federal Test Procedure (SFTP). With the 100% phase-in of the SFTP in 2004 for passenger cars and light light-duty trucks, there is additional motivation to reduce the size of the A/C system. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is investigating ways to reduce the amount of energy consumed for automobile climate control. If the peak soak temperature in an automobile can be reduced, the power consumed by the air conditioner may be decreased while passenger comfort is maintained or enhanced. Solar reflective glass is one way to reduce the peak soak temperature.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Development of the HyStEP Device

2016-04-05
2016-01-1190
With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device.
Technical Paper

Impact of Biodiesel Blends on Fuel System Component Durability

2006-10-16
2006-01-3279
An ultra-low sulfur diesel (ULSD) fuel was blended with three different biodiesel samples at 5 and 20 volume percent. The biodiesel fuels were derived from rapeseed and soybean oils, and in addition, a highly oxidized biodiesel was prepared from the soy biodiesel by oxidation under controlled conditions. A set of five elastomers commonly used in automotive fuel systems were examined before and after immersion in the six test blends and base fuel at 60°C for 1000 hours. The elastomers were evaluated for hardness, tensile strength, volume change and compression. Injector wear tests were also conducted on the base petrodiesel fuel and the biodiesel blends using a 500-hour test method developed for this study. Bosch VE (in-line) rotary pumps were evaluated for wear after testing for 500 hours on the base fuel, B5 and B20 test fuels. Additionally, a test procedure was developed to accelerate wear on common rail pumps over 500 hours.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOX Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

2006-04-03
2006-01-0425
Increasing fuel costs and the desire for reduced dependence on foreign oil have brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. One of the obstacles to the increased use of diesel engines in this platform is the Tier 2 emission standards. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies-such as common rail fuel injection systems, low-sulfur diesel fuel, oxides of nitrogen (NOX) adsorber catalysts or NACs, and diesel particle filters (DPFs)-allows for the development of powertrain systems that have the potential to comply with these future requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity [1, 2, 3, 4, 5].
X