Refine Your Search

Topic

Author

Search Results

Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

Field Relevance of the New Car Assessment Program Lane Departure Warning Confirmation Test

2012-04-16
2012-01-0284
The availability of active safety systems, such as Lane Departure Warning (LDW), has recently been added as a rating factor in the U.S. New Car Assessment Program (NCAP). The objective of this study is to determine the relevance of the NCAP LDW confirmation test to real-world road departure crashes. This study is based on data collected as part of supplemental crash reconstructions performed on 890 road departure collisions from the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS). Scene diagrams and photographs were examined to determine the lane departure and lane marking characteristics not available in the original data. The results suggest that the LDW confirmation test captures many of the conditions observed in real-world road departures. For example, 40% of all single vehicle collisions in the dataset involved a drift-out-of-lane type of departures represented by the test.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Journal Article

Using Performance Margin and Dynamic Simulation for Location Aware Adaptation of Vehicle Dynamics

2013-04-08
2013-01-0703
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Performance Margin (PM) is defined in this work as the ratio of the required tractive effort to the available tractive effort for the front and rear respectively. This simple definition stems from and incorporates many traditional handling metrics and is robust in its scope of applicability. The PM is implemented in an Intervention Strategy demonstrating its use to avoid situations in which the vehicle exceeds its handling capabilities. Results from a design case study are presented to show the potential efficacy of developing a PM-based control system.
Technical Paper

Sensitivity of Preferred Driving Postures and Determination of Core Seat Track Adjustment Ranges

2007-06-12
2007-01-2471
With advances in virtual prototyping, accurate digital modeling of driving posture is regarded as a fundamental step in the design of ergonomic driver-seat-cabin systems. Extensive work on driving postures has been carried out focusing on the measurement and prediction of driving postures and the determination of comfortable joint angle ranges. However, studies on postural sensitivity are scarce. The current study investigated whether a driver-selected posture actually represents the most preferred one, by comparing the former with ratings of postures selected at 20 predefined places around the original hip joint center (HJC). An experiment was undertaken in a lab setting, using two distinctive driving package geometries: one for a sedan and the other for an SUV. The 20 postural ratings were compared with that of the initial user-selected position.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

A Methodology for Laboratory Testing of Truck Cab Suspensions

2009-10-06
2009-01-2862
This work pertains to laboratory testing of truck cab suspensions for the purpose of improving in-cab ride quality. It describes the testing procedure of a complete truck cab suspension while still being mounted on the vehicle. It allows for testing with minimal amount of resources, limited to two mobile actuators and minimal modifications to the stock vehicle. The actuators can be attached to any axle through a set of modified brake drums and excite the drive axle in a vertical plane. The excitation signal sent to the actuators can be in phase for a heave type motion or out of phase for a roll motion. The chassis shock absorbers are replaced with rigid links to prevent the actuator input from becoming filtered by the primary suspension. This allows the input to reach the cab suspension more directly and the cab to be excited across a broader range of frequencies.
Technical Paper

Development of a Bench Durability Test to the Exhaust Attachment System

2010-10-06
2010-36-0005
For many years durability tests engineers have worked in the sense of improving the tests that, at first, were performed using public roads with high time consumption and low reproducibility. Proving grounds were specially designed to reproduce the most important efforts to the body and chassis systems, but time problem was still there. Time and cost reduction allied to the needs of quality, reliability and reproducibility improvement led the engineers to develop methods and equipments to reproduce the durability tests in the lab. In this way the road simulators appear as a powerful tool able to perform durability tests with high reliability, self-controlled and with very low time compared to the road tests. At this scenery bench tests were also created to components and systems mainly used to anticipate problems before a whole vehicle test.
Technical Paper

Longitudinal Performance of a BAJA SAE Vehicle

2010-10-06
2010-36-0315
Driven by the necessity to reduce costs and improve products quality the automotive industry replaced the design method known as "trial and error" by those grounded on mathematical and physical theory. In this context, a longitudinal performance test was made by BAJA SAE UFMG team, in order to acquire vehicular performance data that will be used to validate computer models. The methodology consists of sensors and data acquisition system research, validation, fixation and installation in the vehicle, test and process of acquired data. From these steps, correlated data were acquired from magnitudes such as angular velocity in transmission shafts, global longitudinal acceleration and velocity, travel of break and throttle pedals and pressure inside of master cylinder. These results developed the knowledge about vehicular dynamic allowing the improvement of futures prototypes.
Technical Paper

A Frequency Analysis of Semiactive Control Methods for Vehicle Application

2004-05-04
2004-01-2098
The performance of five different skyhook control methods is studied experimentally, using a quarter-car rig. The control methods that are analyzed include: skyhook control, groundhook control, hybrid control, displacement skyhook, and relative displacement skyhook. Upon evaluating the performance of each method in frequency domain for various control conditions, they are compared with each other as well as with passive damping. The results indicate that no one control method outperforms other control methods at both the sprung and unsprung mass natural frequencies. Each method can perform better than the other control methods in some respect. Hybrid control, however, comes close to providing the best compromise between different dynamic demands on a primary suspension. The results indicate that hybrid control can offer benefits to both the sprung and unsprung mass with control gain settings that provide equal contributions from skyhook control and groundhook control.
Technical Paper

Can Semiactive Dampers with Skyhook Control Improve Roll Stability of Passenger Vehicles?

2004-05-04
2004-01-2099
Skyhook control has been used extensively for semiactive dampers for a variety of applications, most widely for passenger vehicle suspensions. This paper provides an experimental evaluation of how well skyhook control works for improving roll stability of a passenger vehicle. After discussing the formulation for various semiactive control methods that have been suggested in the past for vehicle suspensions, the paper includes the implementation of a semiactive system with magneto-rheological (MR) dampers on a sport utility vehicle. The vehicle is used for a series of road tests that includes lane change maneuvers, with different types of suspensions. The suspensions that are tested include the stock suspension, the uncontrolled MR dampers, skyhook control, and a new semiactive control method called “SIA skyhook.” The SIA Skyhook augments the conventional skyhook control with steering input, in order to account for the suspension requirements during a lateral maneuver.
Technical Paper

Performance and Emission Analysis of the Otto Cycle Engine Converted to Bi-Fuel Gasoline and Natural Gas (VNG)

2002-11-19
2002-01-3543
This work presents a full analysis of a bi-fuel engine converted to natural gas and aims to survey the main performance losses and the advantages in specific consumption and toxic emissions. With this purpose, dynamometric tests and curves survey of a Fiat Palio 1.6, 16V engine, according to Standard NBR ISO 1585. Tests were made using diverse mixers, trying to obtain the losses caused by this device when the engine is working with gasoline, after the conversion. Tests were performed for different ignition advances, with manual and electronic VNG flow control systems. Trials for many differents low gear engine regulation, looking for consumption reduction and lower emission rates. The gas pressure reducer was tested with and without heating, showing differents results, mainly for emission rates. Other than comparing different components and different engine operation conditions, an analysis of two different natural gas conversion kits were performed, both extensile used in Brazil.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Stability Analysis of Automotive Supervisory Control: A Survey

2011-04-12
2011-01-0974
This paper focuses on stability of automotive supervisory control systems (ASCSs). It serves to introduce the concept of stability with respect to an entire ASCS. The realm of ASCSs is categorized and a brief description of pre-existing classical methods of stability analysis is presented. With the concept then having been fully introduced, an approach to evaluating stability of a key category of ASCS, the rule-based deterministic ASCS, is presented. This approach, cited from unrelated modern literature concerning stability of deterministic finite state machines, is novel in that its original target research area was not specifically automotive engineering.
Technical Paper

Proposal for Improving the Performance of Longitudinal Acceleration of a Land Vehicle

2017-11-07
2017-36-0381
The present study introduces a proposal to improve the longitudinal performance of a land vehicle through the adoption of an unusual traction control system. The system is capable of improving the transfer of engine power to the ground and reduces the complexity of the task being performed by the driver. High-performance vehicles are able to achieve high levels of longitudinal acceleration and, sometimes, the power excess leads to the spinoff of the drive wheels, which decrease the ability of the tires to generate force, and consequently the vehicle acceleration. The proposed system acts in addition with the motor control, through the derivation of the motor speed signal, and its control by comparison with a predefined value. The control can delay or even suppress the ignition of the engine. Thus, the rate at which the engine gains speed, and consequently, the rate at which the vehicle accelerates, is limited.
Technical Paper

Refinement and Testing of an E85 Split Parallel EREV

2012-04-16
2012-01-1196
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended range hybrid electric vehicle. The competition requires participating teams to re-engineer a stock crossover utility vehicle donated by GM. The result of this design process is an Extended Range Electric Vehicle (EREV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design has achieved an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an all-electric range of 87 km (54 miles) [1].
Technical Paper

Model-Based Design of a Plug-In Hybrid Electric Vehicle Control Strategy

2013-04-08
2013-01-1753
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the 2011-2014 EcoCAR 2 competition in which the team is tasked with re-engineering the powertrain of a GM donated vehicle. The primary goals of the competition are to reduce well to wheels (WTW) petroleum energy use (PEU) and reduce WTW greenhouse gas (GHG) and criteria emissions while maintaining performance, safety, and consumer acceptability. To meet these goals HEVT has designed a series parallel plug-in hybrid electric vehicle (PHEV) with multiple modes of operation. This paper will first cover development of the control system architecture with a dual CAN bus structure to meet the requirements of the vehicle architecture. Next an online optimization control strategy to minimize fuel consumption will be developed. A simple vehicle plant model will then be used for software-in-the-loop (SIL) testing to improve fuel economy.
Technical Paper

Assessment of Heavy Vehicle EDR Technologies

2013-09-24
2013-01-2402
Heavy-vehicle event data recorders (HVEDRs) provide a source of temporal vehicle data just prior to, during, and for a short period after, an event. In the 1990s, heavy-vehicle (HV) engine manufacturers expanded the capabilities of engine control units (ECU) and engine control modules (ECM) to include the ability to record and store small amounts of parametric vehicle data. This advanced capability has had a significant impact on vehicle safety by helping law enforcement, engineers, and researchers reconstruct events of a vehicle crash and understand the details surrounding that vehicle crash. Today, EDR technologies have been incorporated into a wide range of heavy vehicle (HV) safety systems (e.g., crash mitigation systems, air bag control systems, and behavioral monitoring systems). However, the adoption of EDR technologies has not been uniform across all classes of HVs or their associated vehicle systems.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2013-10-07
2013-36-0353
The aim of this work is to present the preliminary configuration design studies for an unmanned, lightweight (less than 15 kg), supersonic research aircraft. The studies comprise the aircraft typical mission, the aerodynamic and structural arrangement, preliminary performance, as well as mass distribution. The aircraft, an Unmanned Air Vehicle, or “UAV”, is named as Pohox (“arrow” in Maxakali indian language). It is intended to be the flying test bed for a multicycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. In order to provide validation of the analysis tools, flight performance characteristics of a known, high speed aircraft - North American X-15 - have been also evaluated and compared with the available flight test data. The present analysis is an important step towards the aircraft detailed definition. And the features associated with the configuration obtained are good indications of the technical feasibility of this supersonic UAV.
X