Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Journal Article

Critical Aspects on the Use of Thermal Wall Functions in CFD In-Cylinder Simulations of Spark-Ignition Engines

2017-03-28
2017-01-0569
CFD and FE tools are intensively adopted by engine manufacturers in order to prevent thermo-mechanical failures reducing time- and cost-to market. The capability to predict correctly the physical factors leading to damages is hence essential for their application in the industrial practice. This is even more important for last generation SI engines, where the more and more stringent need to lower fuel consumption and pollutant emissions is pushing designers to reduce engine displacement in favor of higher specific power, usually obtained by means of turbocharging. This brings to a new generation of SI engines characterized by higher and higher adiabatic efficiency and thermo-mechanical loads. A recent research highlighted the different behavior of the thermal boundary layer of such engines operated at high revving speeds and high loads if compared to the same engines operated at low loads and revving speeds or even engines with a lower specific power.
Journal Article

Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine

2017-03-28
2017-01-0551
Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
Journal Article

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

2016-04-05
2016-01-0545
It is widely recognized that spatial and temporal evolution of both macro- and micro- turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both.
Journal Article

Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines

2016-04-05
2016-01-0578
New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine

2015-09-06
2015-24-2499
A new generation of highly downsized SI engines with specific power output around or above 150 HP/liter is emerging in the sport car market sector. Technologies such as high-boosting, direct injection and downsizing are adopted to increase power density and reduce fuel consumption. To counterbalance the increased risks of pre-ignition, knock or mega-knock, currently made turbocharged SI engines usually operate with high fuel enrichments and delayed (sometimes negative) spark advances. The former is responsible for high fuel consumption levels, while the latter induce an even lower A/F ratio (below 11), to limit the turbine inlet temperature, with huge negative effects on BSFC. A possible solution to increase knock resistance is investigated in the paper by means of 3D-CFD analyses: water/methanol emulsion is port-fuel injected to replace mixture enrichment while preserving, if not improving, indicated mean effective pressure and knock safety margins.
Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
X