Refine Your Search

Topic

Search Results

Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

The Use of a Partial Flow Filter to Assist the Diesel Particulate Filter and Reduce Active Regeneration Events

2014-10-13
2014-01-2806
This study investigates the potential of using a partial flow filter (PFF) to assist a wall flow diesel particulate filter (DPF) and reduce the need for active regeneration phases that increase engine fuel consumption. First, the filtration efficiency of the PFF was studied at several engine operating conditions, varying the filter space velocity (SV), through modification of the exhaust gas flow rate, and engine-out particulate matter (PM) concentration. The effects of these parameters were studied for the filtration of different particle size ranges (10-30 nm, 30-200 nm and 200-400 nm). For the various engine operating conditions, the PFF showed filtration efficiency over 25% in terms of PM number and mass. The PFF filtration behaviour was also investigated at idle engine operation producing a high concentration of nuclei particulates for which the filter was able to maintain 60% filtration efficiency.
Technical Paper

Experimental Investigation of Injection Pressure Fluctuations Employing Alternative Fuels

2020-09-15
2020-01-2122
Injection pressure oscillations are proven to determine considerable deviations from the expected mass flow rate, leading to the jet velocities non-uniformity, which in turn implies the uneven spatial distribution of A/F ratio. Furthermore, once the injector is triggered, these oscillations might lead the rail pressure to experience a decreasing stage, to the detriment of spray penetration length, radial propagation and jet break-up timing. This has urged the research community to develop models predicting injection-induced pressure fluctuations within the rail. Additionally, several devices have been designed to minimize and eliminate such fluctuations. However, despite the wide literature dealing with the injection-induced pressure oscillations, many aspects remain still unclear. Moreover, the compulsory compliance with environmental regulations has shifted focus onto alternative fuels, which represent a promising pathway for sustainable vehicle mobility.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
Journal Article

Interrogating the surface: the effect of blended diesel fuels on lubricity

2011-08-30
2011-01-1940
The lubricating properties of two sustainable alternative diesels blended with ultra low sulphur diesel (ULSD) were investigated. The candidate fuels were a biodiesel consisting of fatty acid methyl esters derived from rapeseed (RME) and gas-to-liquid (GTL). Lubricity tests were conducted on a high frequency reciprocating rig (HFRR). The mating specimen surfaces were analysed using optical microscopy and profilometery for wear scar diameters and profiles respectively. Microscopic surface topography and deposit composition was evaluated using a scanning electronic microscope (SEM) with an energy dispersive spectrometer (EDS). Like all modern zero sulphur diesel fuel (ZSD), GTL fuels need a lubricity agent to meet modern lubricity specifications. It has been proven that GTL responds well to typical lubricity additives in the marketplace.
Journal Article

Modelling of Soot Oxidation by NO2 in a Diesel Particulate Filter

2011-08-30
2011-01-2083
Two approaches were adopted to study soot oxidation by NO₂; firstly microreactor tests were performed on soot produced by a soot generator over a range of NO₂ concentrations and temperatures. This enabled measurement to be made under well-controlled conditions. Secondly, soot oxidation measurements were made on an engine bench to obtain data under more realistic, if less controlled, conditions. In the microreactor work NO₂ consumption by soot oxidation and the selectivity of the soot oxidation to CO and CO₂ were measured. The latter was found to vary only slightly with temperature and to be independent of NO₂ concentration. By modeling this data using a 1-dimensional model, rate equations for the soot-NO₂ reaction were determined. These were then tested against the engine data. The soot used in this study was characterized by thermogravimetric analysis, N₂ physisorption and transmission electron microscopy.
Journal Article

Low Ambient Temperature Effects on a Modern Turbocharged Diesel engine running in a Driving Cycle

2014-10-13
2014-01-2713
Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine

2007-04-16
2007-01-0209
Particulate Emissions from Homogeneous Charge Compression Ignition (HCCI) combustion are routinely assumed to be negligible. It is shown here that this is not the case when HCCI combustion is implemented in a direct injection gasoline engine. The conditions needed to sustain HCCI operation were realized using the negative valve overlap method for trapping high levels of residual exhaust gases in the cylinder. Measurements of emitted particle number concentration and electrical mobility diameter were made with a Cambustion DMS500 over the HCCI operating range possible with this hardware. Emissions of oxides of nitrogen, carbon monoxide and unburned hydrocarbons were also measured. These data are presented and compared with similar measurements made under conventional spark ignition (SI) operation in the same engine. Under both SI and HCCI operation, a significant accumulation mode was detected with particle equivalent diameters between 80 and 100 nm.
Technical Paper

CFD Analysis of Air Intake System with Negative Pressure on Intake Grill

2008-06-23
2008-01-1643
The objective of the current research was to predict and analyze the flow through the grill of air intake system which is positioned behind the front wheel arch of vehicle. Most of the vehicle used today locates the grill of air intake at the front side so to acquire benefit of ram effect. In some cases, however, the grill is located behind the vehicle to improve wading performance. The geometry of air intake system of Land Rover Freelander was used in the modelling approach. The study was focused on different flow speeds on the grill at high load operation where the air speed at the grill side is high and creates negative pressure. The CFD results are validated against experimental data of steady flow test bench.
Technical Paper

Effect of Fuel Temperature on Performance and Emissions of a Common Rail Diesel Engine Operating with Rapeseed Methyl Ester (RME)

2009-06-15
2009-01-1896
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Comparative Experimental Study on Microscopic Spray Characteristics of RME, GTL and Diesel

2010-10-25
2010-01-2284
In this paper, the microscopic spray characteristics of diesel, Rapeseed Methyl Ester (RME) and Gas-to-Liquid (GTL) fuel, were studied at different injection pressures and measuring positions using Phase Doppler Anemometry (PDA) technique and the velocity development and size distributions of the fuel droplets were analysed in order to understand spray atomisation process. The injection pressures ranged from 80MPa to 150MPa, and the measuring position varied from 20mm to 70mm downstream the nozzle. It was found that the data rate is quite low in the near nozzle region and at high injection pressure. Sauter Mean Diameter (SMD) of all fuels obviously decreases when the injection pressure increases from 80MPa to 120MPa; but the injection pressure has little promotion on the axial velocity of droplets.
Technical Paper

Understanding the Role of Filtered EGR on PM Emissions

2011-08-30
2011-01-2080
In earlier work we have shown that engine operation with oxygenated fuels (e.g., biodiesel) reduces the particulate matter (PM) emissions and extends the engine tolerance to exhaust gas recirculation (EGR) before it reaches smoke limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. A likely mechanism for engine-out particulate growth is the reintroduction of particle nuclei into the cylinder through EGR. These recirculated PM particles serve as sites for further condensation and accumulation promoting larger and greater number of particles. In order to further our understanding of EGR influence on total PM production, a diesel particulate filter (DPF) was integrated into the EGR loop. A PM reduction of approximately 50% (soot) was achieved with diesel fuel through filtered EGR, whilst still maintaining a significant NOX reduction.
Technical Paper

Improving Cold Start and Transient Performance of Automotive Diesel Engine at Low Ambient Temperatures

2016-04-05
2016-01-0826
Ambient temperature has significant impact on engine start ability and cold start emissions from diesel engines. These cold start emissions are accounted for substantial amount of the overall regulatory driving cycle emissions like NEDC or FTP. It is likely to implement the low temperature emissions tests for diesel vehicles, which is currently applicable only for gasoline vehicles. This paper investigates the potential of the intake heating strategy on reducing the driving cycle emissions from the latest generation of turbocharged common rail direct injection diesel engines at low ambient temperature conditions. For this investigation an air heater was installed upstream of the intake manifold and New European Driving Cycle (NEDC) tests were conducted at -7°C ambient temperature conditions for the different intake air temperatures. Intake air heating reduced the cranking time and improved the fuel economy at low ambient temperatures.
Technical Paper

Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

2012-04-16
2012-01-0403
It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP.
Technical Paper

A Thermally Efficient DOC Configuration to Improve CO and THC Conversion Efficiency

2013-04-08
2013-01-1582
The purpose of this study is to improve the carbon monoxide (CO) and total hydrocarbons (THC) conversion efficiency of a diesel oxidation catalyst (DOC) by enhancing the monolith thermal behaviour through modification of the substrate cell density and wall thickness. The optimisation is based on catalyst properties (light off performance, conversion efficiency, pressure drop and mechanical durability). These properties were first estimated using theoretical equations derived from literature in order to select commercially available substrates for further modelling studies. The thermal behaviour and conversion efficiency of the selected catalysts under diesel exhaust gas conditions were numerically studied using data from an EU5 diesel engine operating a New European Driving Cycle (NEDC). This simulation was carried out on a commercial exhaust aftertreatment modelling program, AXISUITE. The predictions were compared to a reference coated 400/4 catalyst.
Technical Paper

Exhaust-Gas Reforming of Hydrocarbon Fuels

1993-04-01
931096
This paper presents the findings of theoretical and practical studies of an exhaust-gas reforming process, as applied to hydrocarbon fuels. It is shown that hydrogen-containing gaseous reformed fuels can be produced by the interaction of hot combustion products and an n-heptane feedstock in a small-scale catalytic reforming reactor. Predicted and observed reformed fuel chemical compositions were found to correlate well at the lower reactor space velocities tested, where chemical equilibrium conditions can be closely approached. Under these conditions, respective hydrogen and carbon monoxide yields of around 32 and 20 volume per cent were obtained. Under certain conditions, it was found that carbon solids were deposited on the reforming catalyst. Measures taken to avoid this problem included changes in the reforming oxidant to fuel ratio, and the addition of excess steam to the oxidant composition.
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
X