Refine Your Search

Topic

Author

Search Results

Journal Article

Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming

2010-10-25
2010-01-2192
Initial results are presented for the production of hydrogen from waste lubricating oil using a chemical looping reforming (CLR) process. The development of flexible and sustainable sources of hydrogen will be required to facilitate a "hydrogen economy." The novel CLR process presented in this paper has an advantage over hydrogen production from conventional steam reforming because CLR can use complex, low value, waste oils. Also, because the process is scalable to small and medium size, hydrogen can be produced close to where it is required, minimizing transport costs. Waste lubricating oil typically contains 13-14% weight of hydrogen, which through the steam reforming process could produce a syngas containing around 75 vol% H₂, representing over 40 wt% of the fuel. The waste oil was converted to a hydrogen-rich syngas in a packed bed reactor, using a Ni/ Al₂O₃ catalyst as the oxygen transfer material (OTM).
Journal Article

The Influence of Residual Gas NO Content on Knock Onset of Iso-Octane, PRF, TRF and ULG Mixtures in SI Engines

2013-12-20
2013-01-9046
Reported in the current paper is a study of the effects of Nitric Oxide (NO) within a simulated Exhaust Gas Residual (sEGR) on Spark Ignition (SI) engine end gas autoignition. A modified version of the single cylinder Leeds University Ported Optical Engine Version 2 (LUPOE-2) engine was designed to completely eliminate retained residual gas and so allow unambiguous definition of the composition of the in-cylinder charge. The engine was alternately operated on stoichiometric mixtures of iso-octane, two Primary Reference Fuels (PRF), a Toluene Reference Fuel (TRF), and a commercially available Unleaded Gasoline (ULG) and air. These mixtures were diluted with sEGR (products of the complete stoichiometric combustion of the given fuel/air mixture) in mass fractions ranging from 0-15%; with and without 5000ppm NO (0.52% by mass) within that sEGR.
Journal Article

Determination of GHG Emissions, Fuel Consumption and Thermal Efficiency for Real World Urban Driving using a SI Probe Car

2014-04-01
2014-01-1615
A SI probe car, defined here as a normal commercial car equipped with GPS, in-vehicle FTIR tailpipe emission measurement and real time fuel consumption measurement systems, and temperature measurements, was used for measuring greenhouse gas emissions including CO2, N2O and CH4 under real world urban driving conditions. The vehicle used was a EURO4 emission compliant SI car. Two real world driving cycles/routes were designed and employed for the tests, which were located in a densely populated area and a busy major road representing a typical urban road network. Eight trips were conducted at morning rush hours, day time non-peak traffic periods and evening off peak time respectively. The aim is to investigate the impacts of traffic conditions such as road congestion, grade and turnings on fuel consumption, engine thermal efficiency and emissions.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine

2014-04-01
2014-01-1196
Increasingly stringent regulations and rising fuel costs require that automotive manufacturers reduce their fleet CO2 emissions. Gasoline engine downsizing is one such technology at the forefront of improvements in fuel economy. As engine downsizing becomes more aggressive, normal engine operating points are moving into higher load regions, typically requiring over-fuelling to maintain exhaust gas temperatures within component protection limits and retarded ignition timings in order to mitigate knock and pre-ignition events. These two mechanisms are counterproductive, since the retarded ignition timing delays combustion, in turn raising exhaust gas temperature. A key process being used to inhibit the occurrence of these knock and pre-ignition phenomena is cooled exhaust gas recirculation (EGR). Cooled EGR lowers temperatures during the combustion process, reducing the possibility of knock, and can thus reduce or eliminate the need for over-fuelling.
Journal Article

Speciation of Nitrogen Compounds in the Tailpipe Emissions from a SI Car under Real World Driving Conditions

2014-10-13
2014-01-2812
The tailpipe exhaust emissions were measured using a EURO4 emissions compliant SI car equipped with on-board measurement systems such as a FTIR system for gaseous emission, a differential GPS for velocity, altitude and position, thermal couples for temperatures, and a MAX fuel meter for transient fuel consumption. Various nitrogen species emissions (NO, NO2, NOx, NH3, HCN and N2O) were measured at 0.5 Hz. The tests were designed and employed using two real world driving cycles/routes representing a typical urban road network located in a densely populated area and main crowded road. Journeys at various times of the day were conducted to investigate traffic conditions impacts such as traffic and pedestrian lights, road congestion, grade and turning on emissions, engine thermal efficiency and fuel consumption. The time aligned vehicle moving parameters with Nitrogen pollutant emission data and fuel consumption enabled the micro-analysis of correlations between these parameters.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

A New Simulation Approach of Estimating the Real-World Vehicle Performance

2020-04-14
2020-01-0370
Due to the variability of real traffic conditions for vehicle testing, real-world vehicle performance estimation using simulation method become vital. Especially for heavy duty vehicles (e.g. 40 t trucks), which are used for international freight transport, real-world tests are difficult, complex and expensive. Vehicle simulations use mathematical methods or commercial software, which take given driving cycles as inputs. However, the road situations in real driving are different from the driving cycles, whose speed profiles are obtained under specific conditions. In this paper, a real-world vehicle performance estimation method using simulation was proposed, also it took traffic and real road situations into consideration, which made it possible to investigate the performance of vehicles operating on any roads and traffic conditions. The proposed approach is applicable to all kind of road vehicles, e.g. trucks, buses, etc. In the method, the real-road network includes road elevation.
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Technical Paper

An Improved Heat Release Rate (HRR) Model for the Analysis of Combustion Behaviour of Diesel, GTL, and HVO Diesel

2020-09-15
2020-01-2060
Heat Release Rate (HRR) analysis is indispensable in engine research. The HRR of Internal Combustion Engines (ICEs) is most sensitive to gamma (γ). The proposed HRR models in literature were largely based on γ expressed as functions of temperature. However, γ is depended on temperature as well as the excess air ratio (λ). In this work, an improved HRR model based on γ(T, λ) was used to investigate the combustion behaviour of standard diesel, Gas-to-Liquid (GTL) diesel and Hydrotreated Vegetable Oil (HVO) diesel in a 96 kW, multiple fuel injection, Euro V, Direct Injection (DI) engine. The improved HRR model (Leeds HRR model) was validated for the alternative fuels by comparing the fuel masses predicted by the model to the measured fuel masses. The fuel masses predicted by the Leeds HRR model were also compared to the predictions from four HRR models that were based on γ(T).
Journal Article

Determination of Carbon Footprint using LCA Method for Straight Used Cooking Oil as a Fuel in HGVs

2014-04-01
2014-01-1948
In order to improve energy supply diversity and reduce carbon dioxide emissions, sustainable bio-fuels are strongly supported by EU and other governments in the world. While the feedstock of biofuels has caused a debate on the issue of sustainability, the used cooking oil (UCO) has become a preferred feedstock for biodiesel manufacturers. However, intensive energy consumption in the trans-esterification process during the UCO biodiesel production has significantly compromised the carbon reduction potentials and increased the cost of the UCO biodiesel. Moreover, the yield of biodiesel is only ∼90% and the remaining ∼10% feedstock is wasted as by-product glycerol. Direct use of UCO in diesel engines is a way to maximize its carbon saving potentials.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

Power Consumption in Ride of a Combat Support Vehicle Slow-Active Suspension

1997-11-17
973205
Research is currently being undertaken to develop improved suspensions for Combat Support Vehicles (CSV's). Part of this work focuses on the feasibility of using intelligent suspensions to continuously optimise the vehicles performance as the operating environment changes. For an intelligent suspension to be effective in this case, it should enable increased vehicle speed from an improvement in ride performance whilst not detracting from vehicle safety or handling performance. This paper investigates the power consumption of a CSV vehicle with a slow-active suspension. From the power consumption it is possible to estimate the extra fuel consumption and reduction in vehicle top speed. The power consumption was evaluated for a set of representative terrain profiles and vehicle speeds, demonstrating the trade off between suspension power consumption and ride performance improvement.
Technical Paper

Automated Calibration of an Analytical Wall-Wetting Model

2007-01-23
2007-01-0018
This paper describes the development and automated calibration of a compact analytically based model of the wall-wetting phenomenon of modern port fuel-injected (PFI) spark-ignition (SI) gasoline engines. The wall-wetting model, based on the physics of forced convection with phase change, is to be used in an automated model-based calibration program. The first stage of work was to develop a model of the wall-wetting phenomenon in Matlab. The model was then calibrated using experimental data collected from a 1.8-litre turbocharged I4 engine coupled to a dynamic 200kW AC dynamometer. The calibration was accomplished by adopting a two stage optimization approach. Firstly, a design of experiments (DoE) approach was used to establish the effect of the principal model parameters on a set of metrics that characterized the magnitude and duration of the measured lambda deviation during a transient.
Technical Paper

Quantifying the Effects of Biodiesel Blend Ratio, at Varying Ambient Temperatures, on Vehicle Performance and Emissions

2009-06-15
2009-01-1893
A number of studies have been carried out examining the impact of biodiesel blend ratio on vehicle performance and emissions, however there is relatively little data available on the interaction between blend ratio and reduced ambient temperatures over the New European Drive Cycle (NEDC). This study examines the effects of increasing the blend ratio of Rapeseed Methyl Ester (RME) on the NEDC fuel consumption and tailpipe emissions of a vehicle equipped with a 2.0 litre common rail diesel engine, tested on a chassis dynamometer at ambient temperatures of 25, 10 & −5°C. This study found that under low temperature ambient conditions increasing blend ratios had a significant detrimental effect on vehicle particulate emissions reversing the benefits observed at higher ambient temperatures. Blend ratio was found to have minimal impact on hydrocarbon emissions regardless of ambient temperature while carbon monoxide and NOx emissions were found to increase by up to 20% and 5.5% respectively.
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
X