Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Non-Linear Bifurcation Stability Analysis for Articulated Vehicles with Active Trailer Differential Braking Systems

2016-04-05
2016-01-0433
This paper presents nonlinear bifurcation stability analysis of articulated vehicles with active trailer differential braking (ATDB) systems. ATDB systems have been proposed to improve stability of articulated vehicle systems to prevent unstable motion modes, e.g., jack-knifing, trailer sway and rollover. Generally, behaviors of a nonlinear dynamic system may change with varying parameters; a stable equilibrium can become unstable and a periodic oscillation may occur or a new equilibrium may appear making the previous equilibrium unstable once the parameters vary. The value of a parameter, at which these changes occur, is known as “bifurcation value” and the parameter is known as the “bifurcation parameter”. Conventionally, nonlinear bifurcation analysis approach is applied to examine the nonlinear dynamic characteristics of single-unit vehicles, e.g., cars, trucks, etc.
Technical Paper

Determining the Vertical and Longitudinal First Mode of Vibration of a Wide Base FEA Truck Tire

2016-04-05
2016-01-1308
The purpose of this study is to determine the effect of tire operating conditions, such as the tire inflation pressure, speed, and load on the change of the first mode of vibration. A wide base FEA tire (445/50R22.5) is virtually tested on a 2.5m diameter circular drum with a 10mm cleat using PAM-Crash code. The varying parameters are altered separately and are as follows: inflation pressure, varying from 50 psi to 165 psi, rotational speed, changing from 20 km/h to 100 km/h, and the applied load will fluctuate from 1,500 lbs. to 9000 lbs. Through a comparison of previous literature, the PAM-Crash FFT algorithmic results have been validated.
Technical Paper

A Comparative Study of Active Control Strategies for Improving Lateral Stability of Car-Trailer Systems

2011-04-12
2011-01-0959
This paper examines the performance of different active control strategies for improving lateral stability of car-trailer systems using numerical simulations. For car-trailer systems, three typical unstable motion modes, including trailer swing, jack-knifing and roll-over, have been identified. These unstable motion modes represent potentially hazardous situations. The effects of passive mechanical vehicle parameters on the stability of car-trailer systems have been well addressed. For a given car-trailer system, some of these passive parameters, e.g., the center of gravity of the trailer, are greatly varied under different operating conditions. Thus, lateral stability cannot be guaranteed by selecting a specific passive parameter set. To address this problem, various active control techniques have been proposed to improve handling and stability of car-trailer systems. Feasible control methods involve active trailer steering control (ATSC) and active trailer braking (ATB).
Technical Paper

A Review of Car-Trailer Lateral Stability Control Approaches

2017-03-28
2017-01-1580
Ensuring the lateral stability and handling of a car-and-trailer combination remains one of the challenges in safety system design and development for articulated vehicles. This paper reviews the state-of-the-art approaches for car-trailer lateral stability control. A literature review covering the effects of external factors, such as aerodynamic forces, tire forces, and road & climatic conditions, is presented. To address the effects of these factors, researchers have previously investigated numerous passive and active safety control techniques. This paper intends to identify the inadequacies of the passive safety approaches and analyzes promising active-control schemes, such as active trailer steering control (ATSC), active trailer braking (ATB) and model reference adaptive controller (MRAC). A comparative study of these control strategies in terms of applicability and cost effectiveness is performed.
Technical Paper

Design and Optimization of a Robust Active Trailer Steering System for Car-Trailer Combinations

2019-04-02
2019-01-0433
This paper presents a robust active trailer steering (ATS) controller for car-trailer combinations. ATS systems have been proposed and explored for improving the lateral stability and enhancing the path-following performance of car-trailer combinations. Most of the ATS controllers were designed using the linear quadratic regulator (LQR) technique. In the design of the LQR-based ATS controllers, it was assumed that all vehicle and operating parameters were constant. In reality, vehicle and operating parameters may vary, which may have an impact on the stability of the combination. For example, varied vehicle forward speed and trailer payload may impose negative impacts on the directional performance of the car-trailer combination. Thus, the robustness of the conventional LQR-based ATS controllers is questionable. To address this problem, we propose a gain-scheduling LQR-based ATS controller.
Technical Paper

Modeling of Tire-Wet Surface Interaction Using Finite Element Analysis and Smoothed-Particle Hydrodynamics Techniques

2018-04-03
2018-01-1118
This paper focuses on predicting the rolling resistance and hydroplaning of a wide base truck tire (Size: 445/50R22.5) on dry and wet surfaces. The rolling resistance and hydroplaning are predicted at various inflation pressures, loads, velocities, and water depths. The wide base truck tire was previously modeled and validated using Finite Element Analysis (FEA) technique in virtual performance software (Pam-Crash). The water is modeled using Smoothed-Particle Hydrodynamics (SPH) method and Murnaghan equation of state. A water layer is first built on top of an FEA rigid surface to represent a wet surface. The truck tire is then inflated to the desired pressure. A vertical load is then applied to the center of the tire. For rolling resistance tests variable constant longitudinal speeds are applied to the center of the tire. The forces in the vertical and longitudinal directions are computed, and the rolling resistance is calculated.
X