Refine Your Search

Topic

Author

Search Results

Journal Article

Predicting Failure during Sheared Edge Stretching Using a Damage-Based Model for the Shear-Affected Zone

2013-04-08
2013-01-1166
Hole expansion of a dual phase steel, DP600, was numerically investigated using a damage-based constitutive law to predict failure. The parameters governing void nucleation and coalescence were identified from an extensive review of the x-ray micro-tomography data available in the literature to ensure physically-sound predictions of damage evolution. A recently proposed technique to experimentally quantify work-hardening and damage in the shear-affected zone is incorporated into the damage model to enable fracture predictions of holes with sheared edges. Finite-element simulations of a hole expansion test with a conical punch were performed for both a punched and milled hole edge condition and the predicted hole expansion ratios are in very good agreement with the experiment values reported by several researchers.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Application of Damage Models in Bending and Hydroforming of Aluminum Alloy Tube

2004-03-08
2004-01-0835
This paper examines the application of damage models in tube bending and subsequent hydroforming of AlMg3.5Mn aluminum alloy tubes. An in-house Gurson-based damage model, incorporated within LS-DYNA, has been used for the simulations. The applied damage model contains several void nucleation and growth parameters that must be determined for each material. A simpler straight tube hydroforming process was considered first to check the damage parameters and predicted ductility. Then the model was applied to a sequence of bending and hydroforming. The damage history from pre-bending was mapped to the hydroforming stage, to allow prediction of the overall ductility. The applied forming parameters in the simulation were based on data extracted during the experimental tests. Finally, the numerical results were compared to the experimental data.
Technical Paper

Multi-Scale FE/Damage Percolation Modeling of Ductile Damage Evolution in Aluminum Sheet Forming

2004-03-08
2004-01-0742
A so-called damage percolation model is coupled with Gurson-based finite element (FE) approach in order to accommodate the high strain gradients and localized ductile damage. In doing so, void coalescence and final failure are suppressed in Gurson-based FE modeling while a measured second phase particle field is mapped onto the most damaged mesh area so that percolation modeling can be performed to capture ductile fracture in real sheet forming operations. It is revealed that void nucleation within particle clusters dominates ductile fracture in aluminum alloy sheet forming. Coalescence among several particle clusters triggered final failure of materials. A stretch flange forming is simulated with the coupled modeling.
Technical Paper

Numerical and Experimental Investigation of 5xxx Aluminum Alloy Stretch Flange Forming

2004-03-08
2004-01-1051
Stretch flange features are commonly found in the corner regions of commercial parts, such as window cutouts, where large strains can induce localization and necking. In this study, laboratory-scale stretch flange forming experiments on AA5182 and AA5754 were conducted to address the formability of these aluminum alloys under undergoing this specific deformation process. Two distinct cracking modes were found in the stretch flange samples. One is radial cracking at the inner edge of flange (cutout edge) while the other is circumferential cracking away from the inner edge at the punch profile radius. Numerical simulation of the stretch flange forming operations was conducted with an explicit finite element code-LS-DYNA. A coalescence-suppressed Gurson-based material model is used in the finite element model. Void coalescence and final failure in stretch flange is simulated through measured second-phase particle fields with a so-called damage percolation model.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Simulation of Electromagnetic Forming of Aluminum Alloy Sheet

2001-03-05
2001-01-0824
Electromagnetic forming of aluminum alloys provides improved forming limits, minimal springback and rapid implementation. The ability to predict the minimum energy required in electromagnetic forming is essential in developing an efficient process. Understanding the development of the strain distribution over time in the blank is also highly desired. A numerical model is needed that offers insight into these areas and the electromagnetic forming process in general that cannot easily be extracted from experiments. To address these concerns, ANSYS/EMAG is used to model the time varying currents that are discharged through the coil in order to obtain the transient magnetic forces acting on the blank. The body forces caused by electromagnetic induction are then used as the boundary condition to model the high velocity deformation of the blank with LS-DYNA, an explicit dynamic finite element code.
Technical Paper

Static and Dynamic Denting of Paint Baked AA6111 Panels: Comparison of Finite Element Predictions and Experiments

2001-10-16
2001-01-3047
This work presents comparisons of finite element model predictions of static and dynamic denting with experimental results. Panels were stamped from 0.81, 0.93 and 1.00mm AA6111-T4 and then paint-baked to produce representative automotive outer body panels. Each type of panel was statically and dynamically dented at three locations using a 25.4mm steel ball. Static denting was accomplished with incremental loading of 22.24N loads up to a maximum of 244.48N. Dynamic denting was accomplished by dropping the steel ball from heights ranging from 200mm to 1200mm. Multi-stage finite element analysis was performed using LS-DYNA1 and ABAQUS2 to predict the entire process of forming, spring-back, denting and final spring-back of the dented panels. The predicted results show good correlation with the experiments, but also highlight the sensitivity of the predictions to formulation of the finite element problem.
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

2017-03-28
2017-01-0043
Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Technical Paper

Efficient Electro-Thermal Model for Lithium Iron Phosphate Batteries

2018-04-03
2018-01-0432
The development of a comprehensive battery simulator is essential for future improvements in the durability, performance and service life of lithium-ion batteries. Although simulations can never replace actual experimental data, they can still be used to provide valuable insights into the performance of the battery, especially under different operating conditions. In addition, a single-cell model can be easily extended to the pack level and can be used in the optimization of a battery pack. The first step in building a simulator is to create a model that can effectively capture both the voltage response and thermal behavior of the battery. Since these effects are coupled together, creating a robust simulator requires modeling both components. This paper will develop a battery simulator, where the entire battery model will be composed of four smaller submodels: a heat generation model, a thermal model, a battery parameter model and a voltage response model.
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

Weldability Improvement Using Coated Electrodes for RSW of HDG Steel

2006-04-03
2006-01-0092
The increased use of zinc coatings on steels has led to a decrease in their weldability. Weld current and time need to be increased in order to achieve sound welds on these materials compared to uncoated steels, and electrode tip life suffers greatly due to rapid alloying and degradation. In this work, typical uncoated Class II electrodes were tested along with a TiC metal matrix composite (MMC) coated electrode. Tests were conducted to study the weldability and process of nugget formation for both electrodes on HDG (hot dipped galvanized) HSLA (high strength low alloys) steels. Current and time ranges were constructed for both types of electrodes by varying either the weld current or weld time while holding all other parameters constant. Analysis of weld microstructures was conducted on cross-sectioned welds using SEM (scanning electron microscopy). Using the coated electrodes reduced weld current and times needed to form MWS (minimum weld size) on the coated steels.
Technical Paper

Identification of the Plane Strain Yield Strength of Anisotropic Sheet Metals Using Inverse Analysis of Notch Tests

2022-03-29
2022-01-0241
Plane strain tension is the critical stress state for sheet metal forming because it represents the extremum of the yield function and minima of the forming limit curve and fracture locus. Despite its important role, the stress response in plane strain deformation is routinely overlooked in the calibration of anisotropic plasticity models due to challenges and uncertainty in its characterization. Plane strain tension test specimens used for constitutive characterization typically employ large gage width-to-thickness ratios to promote a homogeneous plane strain stress state. Unfortunately, the specimens are limited to small strain levels due to fracture initiating at the edges in uniaxial tension. In contrast, notched plane strain tension coupons designed for fracture characterization have become common in the automotive industry to calibrate stress-state dependent fracture models. These coupons have significant stress and strain gradients across the gage width to avoid edge fracture.
X