Refine Your Search

Topic

Author

Search Results

Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Technical Paper

Direct Calibration of LIF Measurements of the Oil Film Thickness Using the Capacitance Technique

1997-10-01
972859
A direct calibration has been performed on laser-induced fluorescence measurements of the oil film in a single cylinder air-cooled research engine by simultaneously measuring the minimum oil film thickness by the capacitance technique. At the minimum oil film thickness the capacitance technique provides an accurate measure of the ring-wall distance, and this value is used as a reference for the photomultiplier voltage, giving a calibration coefficient. This calibration coefficient directly accounts for the effect of temperature on the fluorescent properties of the constituents of the oil which are photoactive. The inability to accurately know the temperature of the oil has limited the utility of off-engine calibration techniques. Data are presented for the engine under motoring conditions at speeds from 800 - 2400 rpm and under varying throttle positions.
Technical Paper

An Experimental and Numerical Study of Sprays from a Common Rail Injection System for Use in an HSDI Diesel Engine

1998-02-23
980810
An experimental and numerical characterization has been conducted of a high-pressure common rail diesel fuel injection system. The experimental study was performed using a common rail system with the capability of producing multiple injections within a single cycle. The injector used in the experiments had a single guided multi-hole nozzle tip. The diesel sprays were injected into a pressurized chamber with optical access at ambient temperature. The gas density in the chamber was representative of the density in an HSDI diesel engine at the time of injection. Single, pilot, and multiple injection cases were studied at different rail pressures and injection durations. Images of the transient sprays were obtained with a high-speed digital camera. From these images spray tip penetration and cone angles were obtained directly. Also spray droplet sizes were derived from the images using a light extinction method (LEM).
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-01-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
Technical Paper

Pump/Motor Displacement Control Using High-Speed On/Off Valves

1998-09-14
981968
A four valve controller and electronic control circuits were developed to control the displacement of hydrostatic pump/motors (P/M's) utilized in an automobile with a hydrostatic transmission and hydropneumatic accumulator energy storage. Performance of the control system was evaluated. The controller uses four high-speed, two-way, single-stage poppet valves, functioning in the same manner as a 4-way, 3-position spool valve. Two such systems were used to control the displacement of two P/Ms, each system driving a front wheel of the vehicle. The valves were controlled electronically by a distributed-control dead-band circuit and valve driver boards. Testing showed that the control system's time response satisified driving demand needs, but that the control system's error was slightly larger than desired. This may lead to complications in some of the vehicle's operating modes.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Optimization and Testing of a Through the Road Parallel, Hybrid-Electric, Crossover Sports Utility Vehicle

2009-04-20
2009-01-1318
The University of Wisconsin Hybrid Vehicle Team has implemented and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2008 ChallengeX competition. This four year project is based on a 2005 Chevrolet Equinox platform. Fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were appropriately weighted to determine powertrain component selections. Wisconsin's Equinox, nicknamed the Moovada, is a split-parallel hybrid utilizing a General Motors (GM) 110 kW 1.9L CDTi (common rail diesel turbo injection) engine coupled to an F40 6-speed manual transmission. The rear axle is powered by a SiemensVDO induction motor/gearbox power-limited to 65 kW by a 40-module (288 volts nominal) Johnson Controls Inc, nickel-metal hydride battery pack.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Effects of Alternative Fuels and Intake Port Geometry on HSDI Diesel Engine Performance and Emissions

2001-03-05
2001-01-0647
This research explored methods to reduce regulated emissions in a small-bore, direct-injection diesel engine. Swirl was used to influence mixing of the spray plumes, and alternative fuels were used to study the effects of oxygenated and water microemulsion diesel fuels on emissions. Air/fuel mixing enhancement was achieved in the running engine by blocking off a percentage of one of the two intake ports. The swirl was characterized at steady-state conditions with a flowbench and swirl meter. Swirl ratios of 1.85, 2.70, and 3.29 were studied in the engine tests at full load with engine speeds of 1303, 1757, and 1906 rev/min. Increased swirl was shown to have negative effects on emissions due to plume-to-plume interactions. Blends of No. 2 diesel and biodiesel were used to investigate the presence of oxygen in the fuel and its effects on regulated emissions. Pure No. 2 diesel fuel, a 15% and a 30% biodiesel blend (by weight) were used.
Technical Paper

Development of Micro-Diesel Injector Nozzles via MEMS Technology and Effects on Spray Characteristics

2001-03-05
2001-01-0528
Micro-machined planar orifice nozzles have been developed and used with commercially produced diesel injection systems. Such a system may have the capability to improve the spray characteristics in DI diesel engines. The availability of a MEMS (Micro-Electro-Mechanical-Systems) processing sequence supported the construction of micro-planar orifice nozzles, and micro-systems technology was also employed in our macro-instrumentation. To demonstrate this process, fourteen MEMS nozzles were fabricated with deep X-ray lithography and electroplating technology. The circular orifice diameters were varied from 40 to 260 microns and the number of orifices varied from one to 169. Three plates with non-circular orifices were also fabricated to examine the effect of orifice shape on spray characteristics. These nozzles were then attached to commercial injectors and the associated injection systems were used for the spray experiments.
Technical Paper

Design of a Hydraulic Wheel Pump/Motor for a Hydrostatic Automobile

2002-03-19
2002-01-1349
Using a low-speed high-torque (LSHT) pump/motor to provide the speed range and torque for a hydrostatic automobile offers a number of advantages over using a high-speed low-torque pump/motor, combined with a gear reducer. However, there appear to be no LSHT units commercially available that have true variable displacement capability. Because of this void, a variable displacement pump/motor has been designed and built that could provide a direct drive for each wheel of a hydrostatic automobile. The unit uses some components such as the cylinder block, piston and modified rotating case from a commercially available radial piston pump/motor. Initial preliminary testing of the pump/motor indicates that it has good efficiency and performance characteristics, and, with further development should be very attractive for automotive use. This paper focuses on the design and kinematics of the device.
Technical Paper

Reinventing the Internal Combustion (IC) Engine Head and Exhaust Gaskets

2002-03-04
2002-01-0332
This paper describes how a blend of silicon polymers, mixed with the right combination of fillers, enables the production of durable rubber IC engine head and exhaust gaskets. The resin blend, when mixed with glass fiber reinforcement, produces a liquid sealant suitable for exhaust gasket applications. The exhaust sealant and laminate head gaskets were tested on Ford 460 truck engines at Jasper Engine Company and completed more than 5,000 hours of durability testing without incident. Fabric reinforced polymer (FRP) head and exhaust gaskets can be laser cut from molded laminates, creating a ceramic glass-sealed edge. Thermogravimetric scans of typical gasket laminate material reveal an 88%-yield at 1000°C. FRP head gaskets also enable the cost-effective production of multiple spark ignition (MSI) head gaskets.
Technical Paper

Fuel Injection Spray and Combustion Chamber Wall Impingement in Large Bore Diesel Engines

2002-03-04
2002-01-0496
The Diesel engine is a commercially attractive powerplant, however it is noted to have significant specific output of harmful emissions under some operating conditions. One possible solution for reduction of the harmful emissions from the Diesel engine is greater control over the fuel injection event. To gain further understanding of liquid phase Diesel fuel injection spray characteristics, a 2.44 liter displacement, 4 stroke engine was modified for optical access and fitted with a Caterpillar Hydraulic Electronic Unit Injection (HEUI) system. The data collection system consisted of a high repetition rate diode pumped Nd:YAG laser frequency doubled to 532 nm for visible illumination and a Kodak High Speed Motion Analyzer for recording fuel spray images. The engine was motored under various inlet conditions to create an engine combustion chamber environment typical of those found in commercial engines of similar per cylinder displacement class.
Technical Paper

Effect of Fuel Composition on Combustion and Detailed Chemical/Physical Characteristics of Diesel Exhaust

2003-05-19
2003-01-1899
An experimental study was performed to investigate the effect of fuel composition on combustion, gaseous emissions, and detailed chemical composition and size distributions of diesel particulate matter (PM) in a modern heavy-duty diesel engine with the use of the enhanced full-dilution tunnel system of the Engine Research Center (ERC) of the UW-Madison. Detailed description of this system can be found in our previous reports [1,2]. The experiments were carried out on a single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system. The operating conditions of the engine followed the California Air Resources Board (CARB) 8-mode test cycle. The fuels used in the current study include baseline No. 2 diesel (Fuel A: sulfur content = 352 ppm), ultra low sulfur diesel (Fuel B: sulfur content = 14 ppm), and Fisher-Tropsch (F-T) diesel (sulfur content = 0 ppm).
Technical Paper

Effect of Injection Timing on Detailed Chemical Composition and Particulate Size Distributions of Diesel Exhaust

2003-05-19
2003-01-1794
An experimental study was carried out to investigate the effects of fuel injection timing on detailed chemical composition and size distributions of diesel particulate matter (PM) and regulated gaseous emissions in a modern heavy-duty D.I. diesel engine. These measurements were made for two different diesel fuels: No. 2 diesel (Fuel A) and ultra low sulfur diesel (Fuel B). A single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system was used in the experiments. PM measurements were made with an enhanced full-dilution tunnel system at the Engine Research Center (ERC) of the University of Wisconsin-Madison (UW-Madison) [1, 2]. The engine was run under 2 selected modes (25% and 75% loads at 1200 rpm) of the California Air Resources Board (CARB) 8-mode test cycle.
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
X