Refine Your Search

Topic

Search Results

Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Technical Paper

Engine-Out “Dry” Particular Matter Emissions from SI Engines

1997-10-01
972890
The Engine-Out Particulate Matter (EOPM) was collected from a spark ignition engine operating in steady state using a heated quartz fiber filter. The samples were weighted to obtain an EOPMindex and were analyzed using Scanning Electron Microscopy. The EOP Mindex was not sensitive to the engine rpm and load. When the mixture is very rich (air equivalence ratio λ less than ∼ 0.7), the EOPM comprise mostly of soot particles from fuel combustion. In the lean to slightly rich region (0.8 < λ < 1.2), however, the EOPM are dominated by particles derived from the lubrication oil.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Effect of Gas Density and the Number of Injector Holes on the Air Flow Surrounding Non-Evaporating Transient Diesel Sprays

2001-03-05
2001-01-0532
The effect of ambient gas density and the number of injector holes on the characteristics of airflow surrounding non-evaporating transient diesel sprays inside a constant volume chamber were investigated using a 6-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The positive normal velocities across the control surface of single-hole injection sprays were higher than those of 6-hole injection sprays. An abrupt increase in velocities tangential to the control surface near the chamber wall suggests that the recirculation of surrounding gas is accelerated by spray wall impingement.
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

Evaporating Spray Concentration Measurementsfrom Small and Medium Bore Diesel Injectors

2002-03-04
2002-01-0219
Vapor concentration measurements were performed for two unit injectors typically found in small- and medium-bore applications under evaporating conditions similar to those experienced in Diesel engines. Ambient gas temperatures of 800 and 1000 K and an ambient density of 15 kg/m3 were investigated using a constant volume combustion-type spray chamber. The exciplex laserinduced fluorescence technique with TMPD/naphthalene doped into the fuel was used to quantitatively determine the vapor-phase concentration and liquid-phase extent. The vapor-phase concentration was quantified using a previously developed method that includes corrections for the temperature dependence of the TMPD fluorescence, laser sheet absorption, and the laser sheet intensity profile. The effect of increasing ambient temperature (1000 vs. 800 K) was significant on intact liquid length, and on the spray-spreading angle in the early portion of the injection period.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

On the Calibration of Single-Shot Planar Laser Imaging Techniques in Engines

2002-03-04
2002-01-0748
The noise characteristics of four camera systems representative of those typically used for laser-imaging experiments (a back-illuminated slow-scan camera, a frame-straddling slow-scan camera, an intensified slow-scan camera and an intensified video-rate camera) were investigated, and the results are presented as a function of the signal level and illumination level. These results provide the maximum possible signal-to-noise ratio for laser-imaging experiments, and represent the limit of quantitative signal interpretation. A calibration strategy for engine data that limits the uncertainties associated with thermodynamic and optical correction was presented and applied to engine data acquired with two of the camera systems. When a rigorous analysis of the signal is performed it is seen that shot noise limits the quantitative interpretation of the data for most typical laser-imaging experiments, and obviates the use of single-pixel data.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Fuel Film Temperature and Thickness Measurements on the Piston Crown of a Direct-Injection Spark-Ignition Engine

2005-04-11
2005-01-0649
Fuel film temperature and thickness were measured on the piston crown of a DISI engine under both motored and fired conditions using the fiber-based laser-induced fluorescence method wherein a single fiber delivers the excitation light and collects the fluorescence. The fibers were installed in the piston crown of a Bowditch-type optical engine and exited via the mirror passage. The fuel used for the fuel film temperature measurement was a 2×10-6 M solution of BTBP in isooctane. The ratio of the fluorescence intensity at 515 to that at 532 nm was found to be directly, but not linearly, related to temperature when excited at 488 nm. Effects related to the solvent, solution aging and bleaching were investigated. The measured fuel film temperature was found to closely follow the piston crown metal temperature, which was measured with a thermocouple.
Technical Paper

Measurements of Gas Temperature in a HCCI Engine Using a Fourier Domain Mode Locking Laser

2006-04-03
2006-01-1366
Initial measurements of water vapor temperature using a Fourier domain mode locking (FDML) laser were performed in a carefully controlled homogenous charge compression ignition engine with optical access. The gas temperature was inferred from water absorption spectra that were measured each 0.25 crank angle degrees (CAD) over a range of 150 CAD. Accuracy was tested in a well controlled shock tube experiment. This paper will validate the potential of this FDML laser in combustion applications.
Technical Paper

Intake Valve Flow Measurements Using PIV

1993-10-01
932700
Intake valve flow patterns have been measured quantitatively using particle image velocimetry (PIV) for a commercial 4-valve diesel cylinder head and valve system. The measurements have been made for low (600 engine RPM) and higher (1000 engine RPM) speeds, and at several planes in the valve curtain area. The measurements involve double exposure photography of laser light scattered by seed particles (≅1 μm) from a laser light sheet (≅ 0.5 mm by 50 mm) through an imaging system onto silver halide film. Subsequent processing produces the local particle displacement between the two exposures. Combined with the known time interval between exposures, the displacement information can produce velocity vectors at many locations in the field of view. The results of the experiments are shown as vector plots for each operating condition. In the plane of the illuminating laser sheet, velocity vectors representing local gas velocity are produced.
Technical Paper

Hydrodynamics of Droplet Impingement on a Heated Surface

1993-03-01
930919
The impingement of liquid fuels on surfaces in IC engines affects performance and emissions. To better understand liquid/solid interactions, the impact of single droplets on a healed surface was experimentally examined. The droplet impingement was photographed with a high speed cine camera to obtain a history of the hydrodynamics of the impingement process. Images obtained from the cine photography were inspected to determine hydrodynamic regimes: wetting, transition, and non-wetting, associated with the specific impingement conditions (droplet size, velocity, surface temperature, and ambient pressure). Images from selected impingement conditions were further analyzed to quantify the atomization resulting from the impingement.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
X