Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type

2016-04-05
2016-01-0956
Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
Journal Article

Enhanced Durability of a Cu/Zeolite Based SCR Catalyst

2008-04-14
2008-01-1025
Passenger and light duty diesel vehicles will require up to 90% NOx conversion over the Federal Test Procedure (FTP) to meet future Tier 2 Bin 5 standards. This accomplishment is especially challenging for low exhaust temperature applications that mostly operate in the 200 - 350°C temperature regime. Selective catalytic reduction (SCR) catalysts formulated with Cu/zeolites have shown the potential to deliver this level of performance fresh, but their performance can easily deteriorate over time as a result of high temperature thermal deactivation. These high temperature SCR deactivation modes are unavoidable due to the requirements necessary to actively regenerate diesel particulate filters and purge SCRs from sulfur and hydrocarbon contamination. Careful vehicle temperature control of these events is necessary to prevent unintentional thermal damage but not always possible. As a result, there is a need to develop thermally robust SCR catalysts.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Journal Article

The Effect of Hydrocarbons on the Selective Catalyzed Reduction of NOx over Low and High Temperature Catalyst Formulations

2008-04-14
2008-01-1030
Selective Catalytic Reduction of NOx is a promising technology to enable diesel engines to meet certification under Tier 2 Bin 5 emissions requirements. SCR catalysts for vehicle use are typically zeolitic materials known to store both hydrocarbons and ammonia. Ammonia storage on the zeolite has a beneficial effect on NOx conversion; hydrocarbons however, compete with ammonia for storage sites and may also block access to the interior of the zeolites where the bulk of the catalytic processes take place. This paper presents the results of laboratory studies utilizing surrogate hydrocarbon species to simulate engine-out exhaust over catalysts formulated to operate in both low (≈175-500°C) and high temperature (≈250-600°C) regimes. The effects of hydrocarbon exposure of these individual species on the SCR reaction are examined and observations are made as to necessary conditions for the recovery of SCR activity.
Journal Article

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

2012-09-10
2012-01-1695
Two oxygenated fuels were evaluated on a single-cylinder diesel engine and compared to three hydrocarbon diesel fuels. The oxygenated fuels included canola biodiesel (canola methyl esters, CME) and CME blended with dibutyl succinate (DBS), both of which are or have the potential to be bio-derived. DBS was added to improve the cold flow properties, but also reduced the cetane number and net heating value of the resulting blend. A 60-40 blend of the two (60% vol CME and 40% vol DBS) provided desirable cold flow benefits while staying above the U.S. minimum cetane number requirement. Contrary to prior vehicle test results and numerous literature reports, single-cylinder engine testing of both CME and the 60-40 blend showed no statistically discernable change in NOx emissions relative to diesel fuel, but only when constant intake oxygen was maintained.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
Journal Article

Benefits of Pd Doped Zeolites for Cold Start HC/NOx Emission Reductions for Gasoline and E85 Fueled Vehicles

2018-04-03
2018-01-0948
In the development of HC traps (HCT) for reducing vehicle cold start hydrocarbon (HC)/nitrogen oxide (NOx) emissions, zeolite-based adsorbent materials were studied as key components for the capture and release of the main gasoline-type HC/NOx species in the vehicle exhaust gas. Typical zeolite materials capture and release certain HC and NOx species at low temperatures (<200°C), which is lower than the light-off temperature of a typical three-way catalyst (TWC) (≥250°C). Therefore, a zeolite alone is not effective in enhancing cold start HC/NOx emission control. We have found that a small amount of Pd (<0.5 wt%) dispersed in the zeolite (i.e., BEA) can significantly increase the conversion efficiency of certain HC/NOx species by increasing their release temperature. Pd was also found to modify the adsorption process from pure physisorption to chemisorption and may have played a role in the transformation of the adsorbed HCs to higher molecular weight species.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Technical Paper

Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays

1997-10-01
972882
In multidimensional modeling, fuels have been represented predominantly by single components, such as octane for gasoline. Several bicomponent studies have been performed, but these are still limited in their ability to represent real fuels, which are blends of as many as 300 components. This study outlines a method by which the fuel composition is represented by a distribution function of the fuel molecular weight. This allows a much wider range of compositions to be modeled, and only requires including two additional “species” besides the fuel, namely the mean and second moment of the distribution. This approach has been previously presented but is applied here to multidimensional calculations. Results are presented for single component droplet vaporization for comparison with single component fuel predictions, as well as results for a multicomponent gasoline and a diesel droplet.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Initial Estimation of the Piston Ring Pack Contribution to Hydrocarbon Emissions from a Small Engine

2007-10-29
2007-01-4014
The contribution to the engine-out hydrocarbon (HC) emissions from fuel that escapes the main combustion event in piston ring crevices was estimated for an air-cooled, V-twin utility engine. The engine was run with a homogeneous pre-vaporized mixture system that avoids the presence of liquid films in the cylinder, and their resulting contribution to the HC emissions. A simplified ring pack gas flow model was used to estimate the ring pack contribution to HC emissions; the model was tested against the experimentally measured blowby. At high load conditions the model shows that the ring pack returns to the cylinder a mass of HC that exceeds that observed in the exhaust, and thus, is the dominant contributor to HC emissions. At light loads, however, the model predicts less HC mass returned from the ring pack than is observed in the exhaust. Time-resolved HC measurements were performed and used to assess the effect of combustion quality on HC emissions.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Influence of Hydrocarbon Storage on the Durability of SCR Catalysts

2008-04-14
2008-01-0767
Selective catalytic reduction (SCR) is a technology capable of meeting Tier 2 Bin 5 emissions levels of oxides of nitrogen (NOX) for diesel engines. Base metal zeolite catalysts show the best combination of thermal durability and NOX conversion activity. It is shown in this work that some base metal zeolite catalysts can store high levels of hydrocarbons (HCs). Also, base metal zeolite catalysts can catalyze oxidation of HCs under certain conditions. Oxidation of stored hydrocarbons can lead to permanent catalyst deactivation due to the exotherm generated in the SCR catalyst (over-temperature condition leading to SCR catalyst damage). This paper discusses a laboratory bench test to characterize hydrocarbon storage and burn-off characteristics of several SCR catalyst formulations, as well as engine dynamometer tests showing hydrocarbon storage and exotherm generation.
Technical Paper

Comparison of an Alternative Particulate Mass Measurement with Advanced Microbalance Analysis

2004-03-08
2004-01-0589
The regulated level of particulate mass for 2007 heavy duty diesel on-road engines is 0.01 g/bkhp-hr. Measurement of this low level of particulate by weighing is costly and time consuming. The weighing method must measure 100 μg or less of particulate on a filter that weighs about 100 mg with a resolution of ± 2.5 μg or better. This means that the microbalance and sampling handling procedure must be accurate within ±25 ppm by mass or ±1/40,000. It requires a microbalance with 0.1 μg precision housed in a special environment. Moreover, the weighing method involves a lengthy process. The filter must be equilibrated, and then pre- and post-weighed, usually with repeat measurements. An alternative to gravimetric analysis is a thermal mass analyzer that measures the semi-volatile organic fraction (SOF), as well as soot and sulfate fractions of the particulate matter (PM) collected on a cleaned quartz filter. The calibration of the thermal mass measurement is discussed in detail.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
X