Refine Your Search

Topic

Search Results

Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Modeling of Machine Tool Dynamics and Chatter Prediction

1998-06-02
981840
Dynamics of machine tool components play a critical role in the outcome of machining processes. This paper addresses several important issues on machine tool and machining dynamics. It illustrates the dynamic behavior of structural components under operating conditions and presents an improved technique for modeling structural non-linearity. It also describes spindle modeling capability that has been developed to predict dynamic and thermal characteristics of spindle systems. Finally, the paper discusses the impact of non-linear dynamics on machining stability.
Technical Paper

In-process Monitoring and Control of Surface Roughness

1998-06-02
981850
This paper presents in-process monitoring and control based on a novel ultrasonic sensing technique. The developed ultrasonic system provides non-contact measurement of surface roughness, which is applicable to wet machining environments. The utility and robustness of the technique are demonstrated through applications to different processes and materials. In-process surface roughness monitoring capability of the system is also shown along with its potential to monitor flank wear conditions. The result of in-process surface roughness control implementation based on the developed technique shows the control scheme is able to maintain consistent surface roughness values regardless of the tool wear state.
Technical Paper

Multiple Reference Frame Analysis of Non-sinusoidal Brushless DC Drives

1998-04-21
981269
The method of multiple reference frames is employed in the development of a state variable model for brushless DC drives with non-sinusoidal back emf waveforms. This model has the desirable features of being valid for transient and steady-state analysis as well as having state variables that are constant in the steady-state. The model facilitates both nonlinear and linear system analysis and control design. Computer simulation and experimental data are included to validate the analysis.
Technical Paper

Computer Modeling and Simulation of a Tracked Log Skidder with Different Grapple Configurations

1998-09-14
981979
A track-type grapple log skidder was dynamically modeled to allow machine modification by computer to determine the effects of these modifications on the operation of the machine in the forest. The model consisted of an undercarriage, power train, log/drag force, and logging equipment (arch and grapple). This skidder had three types of logging attachments: winch, swinging boom (grapple), and single-function arch (grapple). Each was modeled and simulated under various conditions. The dynamic model of the skidder can be used to analyze its drawbar pull capability and lateral stability with various log weights and soil types on steep slopes. Validation of this model is needed later.
Technical Paper

Swirl-Spray Interactions in a Diesel Engine

2001-03-05
2001-01-0996
Swirl in Diesel engines is known to be an important parameter that affects the mixing of the fuel jets, heat release, emissions, and overall engine performance. The changes may be brought about through interactions of the swirling flow field with the spray and through modifications of the flow field. The purpose of this paper is to investigate the interaction of the swirl with sprays in a Diesel engine through a computational study. A multi-dimensional model for flows, sprays, and combustion in engines is employed. Results from computations are reported with varying levels of swirl and initial turbulence in two typical Diesel engine geometries. It is shown that there is an optimal level of swirl for each geometry that results from a balance between increased jet surface area and, hence, mixing rates and utilization of air in the chamber.
Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

2001-04-30
2001-01-1462
The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
Technical Paper

A Detailed Synchronous Machine Model

2002-10-29
2002-01-3205
A synchronous machine model is set forth that simultaneously incorporates magnetizing path saturation, leakage saturation, and transfer function representations of the rotor circuits. A parameter identification procedure consisting of voltage step tests as well as standstill frequency response tests is described. The model's predictions are validated using the Naval Combat Survivability Generation and Propulsion test bed.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Effects of Window Seal Mechanical Properties on Vehicle Interior Noise

2003-05-05
2003-01-1703
One dominant “wind noise” generating mechanism in road vehicles is the interaction between turbulent flows and flexible structures which include side glass windows. In this study, the effects of seal mechanical properties on the sound generated from flow-induced vibration of side glass windows were investigated. The primary goal was to assess the influence of seal support properties on the noise generated from a plate. Two different models to calculate the optimal support stiffness of the seal that minimizes the velocity response are presented. The results show that both the velocity response and the sound radiation are strongly influenced by dissipation of vibration energy at the edges. It is demonstrate that support tuning can yield significant noise and vibration reduction.
Technical Paper

Effects of Geometric Parameters on the Sound Transmission Characteristic of Bulb Seals

2003-05-05
2003-01-1701
Sound transmission through door and window sealing systems is one important contributor to vehicle interior noise. The noise generation mechanism involves the vibration of the seal due to the unsteady wall pressures associated with the turbulent flow over the vehicle. For bulb seals, sound transmission through the seal is governed by the resonance of the seal membranes and the air cavity within the bulb (the so-called mass-air-mass resonance). The objective of this study was to develop a finite element (FE) model to predict the sound transmission loss of elastomeric bulb seals. The model was then exercized to perform a parametric study of the influence of seveal seal design parameters. The results suggest that the sound transmission loss increases as the membrane thicknesses and/or the separation distance between the two seal walls are increased. The addition of additional internal “webs” was found to have adverse effects on the sound barrier performance.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Equivalent System Mass (ESM) Estimates for Commercially Available, Small-Scale Food Processing Equipment

2004-07-19
2004-01-2526
One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques.
Technical Paper

THE EFFECT OF PROPLETS AND BI-BLADES ON THE PERFORMANCE AND NOISE OF PROPELLERS

1981-02-01
810600
A analytical technique for predicting the aerodynamic performance of propellers with tip devices (proplets) using vortex lattice method shows that the ideal efficiency of a fixed diameter propeller can be improved by 1-5%. By suitable orientation and sweep of the proplet, the noise analysis method presented predicts that propellers with tip devices will have approximately the same noise as propellers without tip devices. Therefore proplets can be added to a fixed diameter propeller to improve the efficiency with no increase in noise or the noise may be reduced by decreasing the diameter with no loss in aerodynamic efficiency.
Technical Paper

The Analysis of Counter-Rotating Propeller Systems

1985-04-01
850869
A vortex lattice method for the aerodynamic analysis of counter-rotation propellers was developed. This model along with an unsteady Sears analysis for correcting the quasi-steady loadings that are obtained from the vortex lattice model were used to predict the performance of counter-rotation propeller systems. The method developed shows good correlation with experimental results. The investigation into the unsteady loadings on each of the propellers indicates that significant variations in loading occur due to the unsteady flow and due to the propeller blade passage. These variations were found to be as high as 17 percent of the mean value. The parametric studies that were performed indicate that reducing the rear propeller's diameter or rotational speed results in a loss of efficiency.
Technical Paper

Efficient Design of Automotive Structural Components via De-Homogenization

2023-04-11
2023-01-0026
In the past decades, automotive structure design has sought to minimize its mass while maintaining or improving structural performance. As such, topology optimization (TO) has become an increasingly popular tool during the conceptual design stage. While the designs produced by TO methods provide significant performance-to-mass ratio improvements, they require considerable computational resources when solving large-scale problems. An alternative for large-scale problems is to decompose the design domain into multiple scales that are coupled with homogenization. The problem can then be solved with hierarchical multiscale topology optimization (MSTO). The resulting optimal, homogenized macroscales are de-homogenized to obtain a high-fidelity, physically-realizable design. Even so MSTO methods are still computationally expensive due to the combined costs of solving nested optimization problems and performing de-homogenization.
Technical Paper

Average Value Modeling of Finite Inertia Power Systems with Harmonic Distortion

2000-10-31
2000-01-3648
Typically, average-value models of power system components neglect harmonic information. Herein, a systematic method of including harmonic information in average-value models based on the theory of multiple reference frames is set forth. Computer simulation results show that when there is significant harmonic distortion of the ac distribution bus the models presented herein are more accurate than traditional average-value models. Furthermore, much of the computational advantage of average-value techniques over detailed modeling techniques is retained.
X