Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of High Injection Pressure, EGR and Charge Air Pressure on Combustion and Emissions in an HD Single Cylinder Diesel Engine

2009-11-02
2009-01-2815
When increasing EGR from low levels to a level that corresponds to low temperature combustion, soot emissions initially increase due to lower soot oxidation before decreasing to almost zero due to very low soot formation. At the EGR level where soot emissions start to increase, the NOx emissions are low, but not sufficiently low to comply with future emission standards and at the EGR level where low temperature combustion occurs CO and HC emissions are too high. The purpose of this study was to investigate the possibilities for shifting the so-called soot bump (where soot levels are increased) to higher EGR levels, or to reduce the magnitude of the soot bump using very high injection pressures (up to 240 MPa) while reducing the NOx emissions using EGR. The possibility of reducing the CO and HC emissions at high EGR levels due to the increased mixing caused by higher injection pressure was also investigated and the flame was visualized using an endoscope at chosen EGR values.
Technical Paper

Effect of Renewable Fuel Blends on PN and SPN Emissions in a GDI Engine

2020-09-15
2020-01-2199
To characterize the effects of renewable fuels on particulate emissions from GDI engines, engine experiments were conducted using EN228-compliant gasoline fuel blends containing no oxygenates, 10% ethanol (EtOH), or 22% ethyl tert-butyl ether (ETBE). The experiments were conducted in a single cylinder GDI engine using a 6-hole fuel injector operated at 200 bar injection pressure. Both PN in raw exhaust and solid PN (SPN) were measured at two load points and various start of injection (SOI) timings. Raw PN and SPN results were classified into various size ranges, corresponding to current and future legislations. At early SOI timings, where particulate formation is dominated by diffusion flames on the piston due to liquid film, the oxygenated blends yielded dramatically higher PN and SPN emissions than reference gasoline because of fuel effects.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Technical Paper

Comparison of Cylinder Pressure Based Knock Detection Methods

1997-10-01
972932
Eight different cylinder pressure trace based knock detection methods are compared using two reference cycles of different time-frequency content, reflecting single blast and developing blast, and a test population of 300 knocking cycles. It is shown that the choice of the pass window used for the pressure data has no significant effect on the results of the different methods, except for the KI20. In contrast to other authors, no sudden step in the knock characteristics is expected; first, because the data investigated contain only knocking cycles, and second, because a smooth transition between normal combustion and knock is expected, according to recent knock theory. It is not only the correlation coefficient, but also the Kendall coefficient of concordance, that is used to investigate the differences between the knock classification methods.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

1997-10-01
972993
A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Using Multi-Rate Filter Banks to Detect Internal Combustion Engine Knock

1997-05-01
971670
The wavelet transform is used in the analysis of the cylinder pressure trace and the ionic current trace of a knocking, single-cylinder, spark ignition engine. Using the wavelet transform offers a significant reduction of mathematical operations when compared with traditional filtering techniques based on the Fourier transform. It is shown that conventional knock analysis in terms of average energy in the time domain (AETD), corresponding to the signal's energy content, and maximum amplitude in the time domain (MATD), corresponding to the maximum amplitude of the bandpass filtered signal, can be applied to both the reconstructed filtered cylinder pressure and the wavelet coefficients. The use of the filter coefficients makes possible a significant additional reduction in calculation effort in comparison with filters based on the windowed Fourier transform.
Technical Paper

The Effect of Charge Air and Fuel Injection Parameters on Combustion with High Levels of EGR in a HDDI Single Cylinder Diesel Engine

2007-04-16
2007-01-0914
When increasing EGR from low levels to levels corresponding to low temperature combustion, soot emissions first start to increase (due to reductions in soot oxidation), before decreasing to almost zero (due to very low rates of soot formation). At the EGR level where soot emissions start to increase, the NOx emissions are still low, but not low enough to comply with future emission standards. The purpose of this study was therefore to investigate the possibilities for moving the so-called “soot bump” (increase in soot) to higher EGR levels or reducing the magnitude of the soot bump. This involved an experimental investigation of parameters affecting the combustion and thus the engine-out emissions. The parameters investigated were: charge air pressure, injection pressure, EGR temperature and post injection (with different dwell times) for a wide range of EGR rates.
Technical Paper

Spray Shape and Atomization Quality of an Outward-Opening Piezo Gasoline DI Injector

2007-04-16
2007-01-1409
The spray formation and consequent atomization of an outward opening piezo-electric gasoline DI injector have been experimentally investigated in a constant pressure spray chamber. The sizes and velocities of the droplets and the resulting spray shape were evaluated, under different boundary conditions, using Planar Mie scattering and Planar Laser-induced Fluorescence (PLIF) in combination with Phase Doppler Anemometry (PDA) analyses and high-speed video photography. The use of piezo-electric actuation for gasoline DI injectors provides an additional means to control the atomization and spray shape that is not available with solenoid-driven injectors such as swirling and multi-hole type injectors. For instance, with piezo injectors up to four injections per cycle are possible, and the fuel flow rate can be controlled by adjusting needle lift. The captured high-speed video images show that a hollow-cone spray forms as the fuel exits the outward-opening nozzle.
Technical Paper

Effect of Ultra-High Injection Pressure on Diesel Ignition and Flame under High-Boost Conditions

2008-06-23
2008-01-1603
In this work, we conducted three-dimensional numerical simulations to investigate the effect of ultra-high injection pressure on diesel ignition and flame under high-boost and medium-load conditions. Three injection cases employed in experiments with a multi-cylinder Volvo D12 engine were applied for validation. The simulations were performed using the KIVA-3V code, with a Kelvin-Helmholz/Rayleigh-Taylor (KH/RT) spray breakup model and a diesel surrogate mechanism involving 83 species and 445 reactions. A range of higher injection pressure levels were projected and the injection rates estimated for the current study. Three different rate shapes of injection were projected and investigated as well. All the projected injection events start at top dead center (TDC). Computations demonstrate that high-pressure injection strongly affects engine ignition and combustion.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

1998-10-19
982617
An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

Injection Strategy Optimization for a Light Duty DI Diesel Engine in Medium Load Conditions with High EGR rates

2009-04-20
2009-01-1441
Further restrictions on NOx emissions and the extension of current driving cycles for passenger car emission regulations to higher load operation in the near future (such as the US06 supplement to the FTP-75 driving cycle) requires attention to low emission combustion concepts in medium to high load regimes. One possibility to reduce NOx emissions is to increase the EGR rate. The combustion temperature-reducing effects of high EGR rates can significantly reduce NO formation, to the point where engine-out NOx emissions approach zero levels. However, engine-out soot emissions typically increase at high EGR levels, due to the reduced soot oxidation rates at reduced combustion temperatures and oxygen concentrations.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

2009-04-20
2009-01-0842
Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Technical Paper

Soot Evolution in Multiple Injection Diesel Flames

2008-10-06
2008-01-2470
In order to meet future emission regulations, various new combustion concepts are being developed, several of which incorporate advanced diesel injection strategies, e.g. multiple injections, offering attractive potential benefits. In this study the effects of split injections on soot evolution in diesel flames were investigated in a series of flame experiments performed using a high pressure, high temperature (HP/HT) spray chamber and laser-induced incandescence apparatus to measure soot volume fractions. The focus was on split injections with varied dwell times preceded by a short pilot. The results, which were analyzed and compared to results from engine tests, show that net soot production can be decreased by applying an appropriate split injection strategy.
Technical Paper

A Study on Head Injury Risk in Car-to-Pedestrian Collisions Using FE-Model

2009-06-09
2009-01-2263
Head injury is quite frequently occurred in car-to-pedestrian collisions, which often places an enormous burden to victims and society. To address head protection and understand the head injury mechanisms, in-depth accident investigation and accident reconstructions were conducted. A total of 6 passenger-cars to adult-pedestrian accidents were sampled from the in-depth accident investigation in Changsha China. Accidents were firstly reconstructed by using Multi-bodies (MBS) pedestrian and car models. The head impact conditions such as head impact velocity; position and orientation were calculated from MBS reconstructions, which were then employed to set the initial conditions in the simulation of a head model striking a windshield using Finite Element (FE) head and windshield models. The intracranial pressure and stress distribution of the FE head model were calculated and correlated with the injury outcomes.
X