Refine Your Search

Topic

Search Results

Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Journal Article

Investigation of Wheel Ventilation-Drag using a Modular Wheel Design Concept

2013-04-08
2013-01-0953
Passenger car fuel consumption is a constant concern for automotive companies and the contribution to fuel consumption from aerodynamics is well known. Several studies have been published on the aerodynamics of wheels. One area of wheel aerodynamics discussed in some of these earlier works is the so-called ventilation resistance. This study investigates ventilation resistance on a number of 17 inch rims, in the Volvo Cars Aerodynamic Wind Tunnel. The ventilation resistance was measured using a custom-built suspension with a tractive force measurement system installed in the Wheel Drive Units (WDUs). The study aims at identifying wheel design factors that have significant effect on the ventilation resistance for the investigated wheel size. The results show that it was possible to measure similar power requirements to rotate the wheels as was found in previous works.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Lessons Learned from Model Based Development of a Distributed Embedded Automotive Control System

2004-03-08
2004-01-0713
Model based development promises to facilitate the development of embedded control systems, including design, early verification and validation as well as implementation. Existing tools are beginning to support the development of distributed control systems. There are however still challenges when it comes to integration with mechanics and methodologies for such interdisciplinary systems.
Technical Paper

Numerical Flow Simulations of a Detailed Car Underbody

2001-03-05
2001-01-0703
The airflow around a detailed car underbody has been simulated using a commercial CFD software. Moving ground and rotating-wheel boundary conditions were applied in order to allow comparisons of Cd and dCd values with experimental data from a wind tunnel fitted with moving ground facilities. The calculated Cd and dCd figures compared very well with the available experimental results. Four configurations were tested and the maximum difference between experimental and numerical Cd values was 0.009. The individual contribution of different parts of the vehicle to the total drag was calculated and is discussed in this paper. This paper also describes in detail the numerical technique used to perform the computations.
Technical Paper

Field Method for Torsion Stiffness Measurement of Complete Vehicles

2003-10-27
2003-01-2754
The following paper describes how to measure the global torsional stiffness of a complete car under field-like conditions. All that's needed are lifting devices, two stands of equal height, three glide planes or equivalent, three scales and two inclinometers, a spirit level, some pieces of aluminum and a glue gun. The results from four measured cars are presented and a comparison is made with values obtained with laboratory equipment and data from manufacturers. The method is a fast and economic means to find the most interesting cars that then can be selected for measurement by traditional methods, giving the stiffness as a function of the vehicles long axis, and thus minimizes the cost of benchmarking. Time for measuring one car with all equipment readily available and with personnel having some experience of the method is about two hours. Only the sway bars have to be disconnected. Absolutely no damage to the measured car means that rented cars can be used.
Technical Paper

Design Process for Property Based Optimization of Vehicle Body Structures

2003-10-27
2003-01-2755
Structural topology optimization is a truly interesting and important area, which has developed very rapidly and matured considerably in many fields. However, the use of topology optimization for global structures, using detailed design, is still tremendously time-consuming. From this perspective, the author sees the development of methods and tools to include optimization on simplified models during the design process as the most interesting and important step towards implementing structure topology optimization in the vehicle industry. In the design process, structures are broken down into beams and joints, and are described using a PBM (Property Based Model). Beams are described using a rectangular cross-section with the possibility of being changed in size, shape and orientation. Joints are described as flexible elements using a set of sub-elements called 2-joints that makes it possible for the joint model to change topology and stiffness.
Technical Paper

The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap

2004-06-08
2004-01-1967
A single-cylinder engine was operated in HCCI combustion mode with different kinds of commercial fuels. The HCCI combustion was generated by creating a negative valve overlap (early exhaust valve closing combined with late intake valve opening) thus trapping a large amount of residuals (∼ 55%). Fifteen different fuels with high octane numbers were tested six of which were primary reference fuels (PRF's) and nine were commercial fuels or reference fuels. The engine was operated at constant operational parameters (speed/load, valve timing and equivalence ratio, intake air temperature, compression ratio, etc.) changing only the fuel type while the engine was running. Changing the fuel affected the auto-ignition timing, represented by the 50% mass fraction burned location (CA50). However these changes were not consistent with the classical RON and MON numbers, which are measures of the knock resistance of the fuel. Indeed, no correlation was found between CA50 and the RON or MON numbers.
Technical Paper

Supporting Welding Methods for Future Light Weight Steel Car Body Structures

2002-07-09
2002-01-2091
In the continuous struggle to improve car body properties, and at the same time reduce the weight of the structure, new materials and body concepts are being evaluated. In competition with more self-evident lightweight materials such as aluminium and plastic composites, new and different grades of high-strength steels with various surface coatings are being introduced. From experience it is known that to be able to weld and join these steel grades under high-volume conditions, it is necessary to perform comprehensive testing to establish those assembly parameters which give a superior and reliable weld quality. To meet the demands of cost-effective low volume production, we can notice a tendency to move away from traditional uni-body concepts and into the direction of space-frame structures. These can preferably be manufactured out of high-strength steels by using production methods like roll-forming, hydro-forming and hot-forming.
Technical Paper

Drag Reduction Mechanisms Due to Moving Ground and Wheel Rotation in Passenger Cars

2002-03-04
2002-01-0531
There are now several wind tunnel facilities within Europe for testing passenger cars with and without moving ground and rotating wheel conditions (henceforth abbreviated to MVG&RW conditions). Within these facilities, the drag of a car under MVG&RW conditions is typically less than the drag of a car under stationary ground and stationary wheel conditions. This drag difference has been found to vary from a decrease of about 25 drag counts to a small drag increase according to published sources. A drag reduction of 10 to 20 drag counts is more typical, however.
Technical Paper

On the Influence of the Near Wall Formulation of Turbulence Models for Prediction of Aerodynamic Coefficients for Ground Vehicles

2003-03-03
2003-01-1317
Numerical and modeling errors in computational aerodynamics consist of multiple components. Previous investigations at Volvo have shown that low Reynolds k-ε models generally give better levels in pressure over the rear base area of the car than the corresponding wall function based model. However, these computations were carried out on car shapes without wheels. This paper presents numerical simulations of the flow field around three versions of the Volvo validation car series (VRAK). The geometry is a typical car with flat floor and simplified tires. The three car models differ by their rear shape. The configurations are: one with a nearly flat base, a fastback with a sloping rear window, and a car with a roof wing. The influence of the near wall formulation of the standard k-ε model on drag and lift is investigated. The performance of the low Reynolds number version of the cubic k-ε model by Suga [7] is also investigated.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
Technical Paper

Improving Subjective Assessment of Vehicle Dynamics Evaluations by means of Computer-Tablets as Digital Aid

2016-04-05
2016-01-1629
Vehicle dynamics development relies on subjective assessments (SA), which is a resource-intensive procedure requiring both expert drivers and vehicles. Furthermore, development projects becoming shorter and more complex, and increasing demands on quality require higher efficiency. Most research in this area has focused on moving from physical to virtual testing. However, SA remains the central method. Less attention has been given to provide better tools for the SA process itself. One promising approach is to introduce computer-tablets to aid data collection, which has proven to be useful in medical studies. Simple software solutions can eliminate the need to transcribe data and generate more flexible and better maintainable questionnaires. Tablets’ technical features envision promising enhancements of SA, which also enable better correlations to objective metrics, a requirement to improve CAE evaluations.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
X