Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

Static and Dynamic Instabilities of Electrostatic Actuated MEMS Devices

2008-04-14
2008-01-0915
Fast and accurate characterization of stability regions and operational range with respect to pull-in voltage and displacement is critical in the design and development of MEMS resonators and switches. This paper presents a mathematical and computational procedure for modeling and analysis of static and dynamic instabilities of capacitive microdevices employing resonant microbeams. The mathematical model consists of a nonlinear microbeam under distributed electrostatic actuation and squeeze film damping. The coupled system is described by the nonlinear beam equation and a modified compressible Reynolds equation to account for the rarefied gas in the narrow gap between the microbeam and substrate. The Differential Quadrature Method (DQM) is used to discretize partial differential equations of motion and solve for static deflection, natural frequencies, static pull-in voltage, and quality factors for various encapsulation air pressures and applied DC voltages.
Technical Paper

Using Polygot Persistence with NoSQL Databases for Streaming Multimedia, Sensor, and Messaging Services in Autonomous Vehicles

2020-04-14
2020-01-0942
The explosion of big data has created challenges for both cloud-based systems and Autonomous Vehicles (AVs) in data collection and management. The same challenges are now being realized in developing databases for integrated sensors, streaming, real-time and on-demand services in AVs. With just one AV expecting to generate over 30 Terabytes of data a day, modern NoSQL databases provide opportunities to horizontally scale AV data seamlessly. NoSQL provides solutions designed to accommodate a wide variety of data models such as, key-value, document, column and graph databases. Key-value stores are by nature scalable, fast processing, and distribute horizontally. These databases are tasked with handling several data types including IoT, radar, lidar, ultra-sonic sensors, GPS, odometry, and sensor data while providing streaming and real-time services. NoSQL can store and utilize structured, semi-structured, and unstructured data necessary for multimedia storage needs.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Today’s advanced vehicles have high degree of interaction due to numerous sensors, actuators and also with complex communication within the control units. In order to hack a vehicle, it has to be within a certain range of communication. Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure. The results discussed here focus on the first detection method that is Cyber-Attack detection algorithm.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Technical Paper

Lattice Brake Disc Instability Analysis Using Transient Complex Eigenvalue Method in Terms of Excitation Applied to the Pad

2018-04-03
2018-01-0091
This paper describes an integrated approach to the analysis of brake squeal with newly lattice brake disc design. The procedure adopted to define the lattice properties by considering the periodicity cell of lattice plates, present equations of motion and modes response of a periodic lattice disc in principal coordinates on the rotating disc which excited by distributed axial load. The non-linear contact problem is carried out based on a typical passenger car brake for vanned and lattice brake disc types as it undergoes a partial simulation of the SAE J2521 drag braking noise test. The experimental modal analysis (EMA) with impact hammer test is used to obtain the brake rotor modal properties and validated finite element Free- Free State and stability analysis. The fugitive nature of brake squeal is analyzed through the complex eigenvalue extraction technique to define dynamic instability.
Technical Paper

Latency Analysis for Inter-Vehicle Communications

2006-04-03
2006-01-1330
The study done by the U.S. National Highway Traffic Safety Administration (NHTSA) shows that developing automotive collision warning and avoidance systems will be very effective in order to significantly reduce fatalities, injuries and associated costs. In order to develop an automotive collision warning and avoidance system, it will be necessary that the vehicles should be able to exchange (in real-time) their dynamic information such as speed, acceleration, direction, relative position, status of some devices like brake, steering wheel, gas pedal, etc. The only feasible way to exchange the vehicles’ dynamic information will be through the use of wireless communication technology. However, the wireless link setup time and communication latencies should be under certain bounds so that the vehicles can appropriately react on time to avoid collisions. This paper will present results from an experimental setup that simulates inter-vehicle communications.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Technical Paper

Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading

1986-10-01
861925
A review of the literature dealing with the injury tolerance of the lower extremities in quantitative terms is provided. The data stem from sources ranging from Weber (1859) to as recent as Culver (1984) and in all cases involve tests of embalmed or unembalmed cadaveric specimens. The strength of the femur (thigh bone) and tibia (shin bone) have been depicted primarily in terms of the peak axial compressive force or bending moment associated with fracture-producing tests. Peak forces involved in fracturing the patella (knee cap) are reported for static and dynamic distributed loads involving both padded and rigid contact surfaces. One study is described where patella data are available for punch-through type fractures resulting from loading by small diameter impactors. Limited data are provided for hip joint dislocation and/or pelvic fracture as a result of loading through the femur. Finally, limited data are also included for injury at the knee and ankle joints.
Technical Paper

Safe Interaction for Drivers: A Review of Driver Distraction Guidelines and Design Implications

2015-04-14
2015-01-1384
In this age of the Internet of Things, people expect in-vehicle interfaces to work just like a smartphone. Our understanding of the reality of in-vehicle interfaces is quite contrary to that. We review the fundamental principles and metrics for automotive visual-manual driver distraction guidelines. We note the rise in portable device usage in vehicles, and debunk the myth of increased crash risk when conversing on a wireless device. We advocate that portable electronic device makers such as Apple and Google should adopt driver distraction guidelines for application developers (whether for tethered or untethered device use in the vehicle). We present two design implications relevant to safe driving. First, the Rule of Platform Appropriateness: design with basic principles of ergonomics, and with driver's limited visual, manual and cognitive capacity, in mind. Second, the Rule of Simplicity: thoughtful reduction in the complexity of in-vehicle interfaces.
Technical Paper

HD-Map Based Ground Truth to Test Automated Vehicles

2022-03-29
2022-01-0097
Over the past decade there has been significant development in Automated Driving (AD) with continuous evolution towards higher levels of automation. Higher levels of autonomy increase the vehicle Dynamic Driving Task (DDT) responsibility under certain predefined Operational Design Domains (in SAE level 3, 4) to unlimited ODD (in SAE level 5). The AD system should not only be sophisticated enough to be operable at any given condition but also be reliable and safe. Hence, there is a need for Automated Vehicles (AV) to undergo extensive open road testing to traverse a wide variety of roadway features and challenging real-world scenarios. There is a serious need for accurate Ground Truth (GT) to locate the various roadway features which helps in evaluating the perception performance of the AV at any given condition. The results from open road testing provide a feedback loop to achieve a mature AD system.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Technical Paper

New Paradigm in Robust Infrastructure Scalability for Autonomous Applications

2019-04-02
2019-01-0495
Artificial Intelligence (A.I.) and Big Data are increasing become more applicable in the development of technology from machine design and mobility to bio-printing and drug discovery. The ability to quantify large amounts of data these systems generate will be paramount to establishing a robust infrastructure for interdisciplinary autonomous applications. This paper purposes an integrated approach to the environment, pre/post data processing, integration, and system security for robust systems in intelligent transportation systems. The systems integration is based on a FPGA embedded system design and computing (EDGE) platform utilizing image processing CNN algorithms from High Energy Physics (HEP) experiments in data centers with associative memory to ROS- FPGA technology in vehicles for hyper-scale infrastructure scalability. The ability to process data in the future is equivalent to collision particle detection that the Large Hadron Collider (LHC) produces at CERN.
Technical Paper

Determining Vibro-Acoustic Characteristics and Structural Damping of an Elastic Monolithic Panel

2019-06-05
2019-01-1538
Evaluations of the dynamic and acoustic responses of panels, partitions, and walls are of concern across many industries, from building home appliances, planning meeting rooms, to designing airplanes and passenger cars. Over the past few decades, search efforts for developing new methodologies and technologies to enable NVH engineers to acquire and correlate dynamically the relationship between input excitations and vibro-acoustic responses of arbitrary-shaped panels has grown exponentially. The application of a particular methodology or technology to the evaluation of a specific structure depends intimately on the goals and objectives of the NVH engineers and industries.
Journal Article

Cognitive Distraction While Driving: A Critical Review of Definitions and Prevalence in Crashes

2012-04-16
2012-01-0967
There is little agreement in the field of driving safety as to how to define cognitive distraction, much less how to measure it. Without a definition and metric, it is impossible to make scientific and engineering progress on determining the extent to which cognitive distraction causes crashes, and ways to mitigate it if it does. We show here that different studies are inconsistent in their definitions of cognitive distraction. For example, some definitions do not include cellular conversation, while others do. Some definitions confound cognitive distraction with visual distraction, or cognitive distraction with cognitive workload. Other studies define cognitive distraction in terms of a state of the driver, and others in terms of tasks that may distract the driver. It is little wonder that some studies find that cognitive distraction is a negligible factor in causing crashes, while others assert that cognitive distraction causes more crashes than drunk driving.
Technical Paper

A Data-Based Modeling Approach for the Prediction of Front Impact (NCAP) Safety Performance of a Passenger Vehicle

2021-04-06
2021-01-0923
Designing a vehicle for superior crash safety performance in consumer rating tests such as US-NCAP is a compelling target in the design of passenger vehicles. In today’s context, there is also a high emphasis on making a vehicle as lightweight as possible which calls for an efficient design. In modern vehicle design, these objectives can only be achieved through Computer-Aided Engineering (CAE) for which a detailed CAD (Computer-Aided Design) model of a vehicle is a pre-requisite. In the absence of the latter (i.e. a matured CAD model) at the initial and perhaps the most crucial phase of vehicle body design, a rational approach to design would be to resort to a knowledge-based methodology which can enable crash safety assessment of an assumed design using artificial intelligence techniques such as neural networks.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
X