Refine Your Search

Topic

Search Results

Journal Article

Hydrogen Fuel Consumption Correlation between Established EPA Measurement Methods and Exhaust Emissions Measurements

2008-04-14
2008-01-1038
The development of hydrogen-fueled vehicles has created the need for established fuel consumption testing methods. Until now the EPA has only accepted three methods of hydrogen fuel consumption testing, gravimetric, PVT (stabilized pressure, volume and temperature), and Coriolis mass flow; all of which necessitate physical measurements of the fuel supply [1]. BMW has developed an equation and subsequent testing methods to accurately and effectively determine hydrogen fuel consumption in light-duty vehicles using only exhaust emissions. Known as “Hydrogen-Balance”, the new equation requires no changes to EPA procedures and only slight modifications to most existing chassis dynamometers and CVS (Constant Volume Sampling) systems. The SAE 2008-01-1036, also written by BMW, explains the background as well as required equipment and changes to the CVS testing system. This paper takes hydrogen balance further by testing it against the three EPA established forms of fuel consumption.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Modelling the Use Phase of Passenger Cars in LCI

1998-11-30
982179
The results of previous Life Cycle Assessments indicate the ecological dominance of the vehicle's use phase compared to its production and recycling phase. Particularly the so-called weight-induced fuel saving coefficients point out the great spectrum (0.15 to 1.0 l/(100 kg · 100 km)) that affects the total result of the LCA significantly. The objective of this article, therefore, is to derive a physical based, i.e. scientific chargeable and practical approved, concept to determine the significant parameters of a vehicle's use phase for the Life Cycle Inventory. It turns out that - besides the aerodynamic and rolling resistance parameters and the efficiencies of the power train - the vehicle's weight, the rear axle's transmission ratio and the driven velocity profile have an important influence on a vehicle's fuel consumption.
Technical Paper

Comfort and Convenience Features in Luxury Cars

2002-10-21
2002-21-0052
This paper presents new comfort and convenience features in the luxury segment and focuses especially on Comfort Access and iDrive. The Comfort Access System offers the customer the possibility of unlocking the vehicle without active use of a key, of starting the engine and at the end of the journey of locking the car again. The aim of the iDrive concept was to enable intuitive operation of the various functions with simultaneously improved ergonomics. Both, a monitor and a controller with its variable haptic are the concept’s innovation. In addition, this paper also discusses future ECU (Electronic Control Unit) networks for body electronics. The focus is on package-driven ECU network architecture, having many functions developed by different suppliers on a single ECU.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

Local Gaussian Process Regression in Order to Model Air Charge of Turbocharged Gasoline SI Engines

2016-04-05
2016-01-0624
A local Gaussian process regression approach is presented, which allows to model nonlinearities of internal combustion engines more accurate than global Gaussian process regression. By building smaller models, the prediction of local system behavior improves significantly. In order to predict a value, the algorithm chooses the nearest training points. The number of chosen training points depends on the intensity of estimated nonlinearity. After determining the training points, a model is built, the prediction performed and the model discarded. The approach is demonstrated with a benchmark system and air charge test bed measurements. The measurements are taken from a turbocharged SI gasoline engine with both variable inlet valve lift and variable inlet and exhaust valve opening angle. The results show how local Gaussian process regression outmatches global Gaussian process regression concerning model quality and nonlinearities in particular.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
Technical Paper

Title: Development of Reusable Body and Comfort Software Functions

2013-04-08
2013-01-1403
The potential to reduce the cost of embedded software by standardizing the application behavior for Automotive Body and Comfort domain functions is explored in this paper. AUTOSAR, with its layered architecture and a standard definition of the interfaces for Body and Comfort application functions, has simplified the exchangeability of software components. A further step is to standardize the application behavior, by developing standard specifications for common Body and Comfort functions. The corresponding software components can be freely exchanged between different OEM/Tier-1 users, even if developed independently by multiple suppliers. In practice, individual OEM users may need to maintain some distinction in the functionality. A method of categorizing the specifications as ‘common’ and ‘unique’, and to configure them for individual applications is proposed. This allows feature variability by means of relatively simple adapter functions.
Technical Paper

Liquid Hydrogen Storage Systems Developed and Manufactured for the First Time for Customer Cars

2006-04-03
2006-01-0432
There is a common understanding that hydrogen has a great potential to be the fuel of the future. In addition to the challenge of developing appropriate hydrogen propulsion systems the development of hydrogen storage systems is the second big issue. Due to its high potential in cost and weight and specific storage capacity, the BMW Group is focusing on the development of liquid hydrogen storage systems. In the next hydrogen 7-Series the BMW Group is about to make for the first time the step from demonstration fleets to cars used by external users with a liquid hydrogen storage system. To realize this significant goal, special focus has to be put on high safety standards so that hydrogen can be considered as safe as common types of fuel, and on the every day reliability of the storage system. Moreover, the development of strong partnerships with suppliers is a key factor to realize the design and identify appropriate manufacturing processes.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Influence of Forces on Comfort Feeling in Vehicles

2000-06-06
2000-01-2171
When investigating the posture comfort in vehicles two important influencing factors can be distinguished: In order to evaluate these influences a combined laboratory-field-experiment was carried out. A real car was equipped with cameras to record the body posture and the joint angles. The static forces exerted by the driver on his contact points were recorded in a corresponding mock-up. The forces to maintain the body posture were calculated. The following results were found:
Technical Paper

Robustness and Reliability Enhancement on Retractor Noise Testing, from Development Considerations to Round Robin

2018-06-13
2018-01-1533
Sensing and acting elements to guarantee the locking functions of seat belt retractors can emit noise when the retractor is subjected to externally applied vibrations. For these elements to function correctly, stiffness, inertia and friction needs to be in tune, leading to a complex motion resistance behavior, which makes it delicate to test for vibration induced noise. Requirements for a noise test are simplicity, robustness, repeatability, and independence of laboratory and test equipment. This paper reports on joint development activities for an alternative test procedure, involving three test laboratories with different equipment. In vehicle observation on parcel shelf mounted retractors, commercially available test equipment, and recent results from multi-axial component tests [1], set the frame for this work. Robustness and reliability of test results is being analyzed by means of sensitivity studies on several test parameters.
Technical Paper

Mechanical Retractor Noise Evaluation on Electrodynamic Shaker: Test Procedure

2018-06-13
2018-01-1532
Modern vehicles are driven with various speeds over specific rough road tracks to detect the presence of annoying buzz, squeak and rattle sounds. As known in the occupant safety industry the mechanical locking systems of seat belt retractors can be significant noise sources, when excited by road vibrations. A reliable bench test procedure is necessary to quantify the acoustic performance of retractors, verify production quality, and derive realistic acoustic product targets. With this goal, a vibration noise test procedure has been developed condensing the work over three years by the K2 Comet automotive research project X2T1, various OEM retractor noise specifications closed to public and own research. The load case in this specification has been defined as horizontal 60 Hz bandlimited broadband excitation, while the N10 instationary loudness metric has been selected to characterize the retractor acoustic performance.
Technical Paper

Seat Belt Retractor Noise Test Correlation to 2DOF Shaker Test and Real Vehicle Comfort

2018-06-13
2018-01-1507
Seatbelt retractors as important part of modern safety systems are mounted in any automotive vehicle. Their internal locking mechanism is based on mechanically sensing elements. When the vehicle is run over rough road tracks, the retractor oscillates by spatial mode shapes and its interior components are subjected to vibrations in all 6 degrees of freedoms (DOF). Functional backlash of sensing elements cause impacts with neighbouring parts and leads to weak, but persistent rattle sound, being often rated acoustically annoying in the vehicle. Current acoustic retractor bench tests use exclusively uni-directional excitations. Therefore, a silent 2 DOF test bench is developed to investigate the effect of multi-dimensional excitation on retractor acoustics, combining two slip-tables, each driven independently by a shaker. Tests on this prototype test bench show, that cross coupling between the two perpendicular directions is less than 1%, allowing to control both directions independently.
Technical Paper

A Physical-Based Approach for Modeling the Influence of Different Operating Parameters on the Dependency of External EGR Rate and Indicated Efficiency

2018-09-10
2018-01-1736
External Exhaust Gas Recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged spark-ignition engines. Of the competing technologies and configurations, Low-Pressure EGR (LP-EGR) is the most challenging in terms of its dynamic behavior. Only some of the stationary feasible potential can be used during dynamic engine operation. To guarantee fuel consumption-optimized engine operation with no instabilities, a load point-dependent limitation of the EGR rate or alternatively an adaptation of the operating point to the actual EGR rate is crucial. For this purpose, a precise knowledge of efficiency and combustion variance is necessary. Since the operating state includes the actual EGR rate, it has an additional dimension, which usually results in an immense measuring effort.
Journal Article

Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine

2020-09-15
2020-01-2117
Pilot injection gas engines are commonly used as large stationary engines. Often, the combustion is implemented as a dual-fuel strategy, which allows both mixed and diesel-only operation, based on a diesel engine architecture. The current research project focuses on the application of pilot injection in an engine based on gasoline components of the passenger car segment, which are more cost-effective than diesel components. The investigated strategy does not aim for a diesel-only combustion, hence only small liquid quantities are used for the main purpose of providing a strong, reliable ignition source for the natural gas charge. This approach is mainly driven to provide a reliable alternative to the high spark ignition energies required for high cylinder charge densities. When using such small liquid quantities, a standard common-rail diesel nozzle will apparently not be ideal regarding some general specifications.
Technical Paper

Powder Clear Coat -- A Quantum Leap in Automotive Paint Technology

2000-03-06
2000-01-1359
BMW - the driving force for progress As we approach the new millenium, to ensure the continuation of the progress into the future, BMW uses leading edge approaches in its materials research and processing. Overview production sites all over the world - Plant Dingolfing Quality requirements for automobile painting The complex and wide-ranging demands that the outer skin of an automobile has to meet offered us the chance to advance with a technological leap from liquid clear coat to the potentials of powder clear coat. The new clear coat technology The clear coat creates the ultimate gloss effect - and powder-based clear coat makes the surface of the car even more brilliant. To achieve this effect the body is covered by microscopically small paint particles. A pioneer achievement A lot of challenges in both material development and systems-engineering had to be made. The automotive world was watching, many experts said it could not be successfully used as an OEM clear coat.
X