Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Emissions of 2-Stroke Scooters with Ethanol Blends

2009-09-13
2009-24-0143
A well balanced use of alternative fuels is an important objective for a sustainable development of individual transportation worldwide. Several countries have objectives to substitute a part of the energy of traffic by ethanol as the renewable energy source. Investigations of limited and unregulated emissions of two 2-S scooters with gasoline-ethanol blend fuels have been performed in the present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network (since 2000). The investigated fuels contained ethanol (E), in the portion of 5, 10, 15 and 20% by volume. The investigated 2-S scooters represented a newer and an older 2-stroke technology with carburettor. The newer one was investigated with and without catalyst and the older one only in the original state without catalyst.
Technical Paper

A Modern HD-Diesel Engine with Rapeseed Oil, DPF and SCR

2008-04-14
2008-01-1382
A modern HD-Diesel engine for construction machines, Liebherr D 934L (120kW) was set-up for a monofuel operation with crude, cold pressed rapeseed oil (ROR)*). The engine was equipped with a supplementary fuel filtration, supplementary engine & fuel heating for cold start and an appropriate fuel temperature control for the engine operation. A special lube oil was applied. After an extensive basic research of emissions including nanoparticles and energy consumption some adaptations of engine setting were performed: modification of the camshaft to eliminate the internal EGR (same valve timing and lift), earlier start of injection (SOI) at high- and full load, application of a combined exhaust gas aftertreatment system DPF+SCR, testing of DPF+SCR according to the VERT quality verification procedure.
Technical Paper

Limited Emissions and Nanoparticulates of a Scooter with 2-Stroke Direct Injection (TSDI)

2003-06-23
2003-01-2314
1 Analysis of limited and nonlimited emissions of scooters was performed during several research programs of the Swiss Federal Office of Environment Forests and Landscape (FOEFL) - and as a contribution to the European project ARTEMIS*). Small scooters, which are very much used in the congested centers of the European cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investiga-tions of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were per-formed and the emissions were compa-red to the other 2-S & 4-S scooters. As nonlimited emissions the nanopar-ticulate emissions at cold and warm operating conditions were measured by means of SMPS, ELPI and NanoMet*). The measurements were both: at steady state and at transient operating conditions.
Technical Paper

Nanoparticulates Of A Scooter With 2-Stroke Direct Injection (TSDI) And Comparison With Other Technologies

2004-01-16
2004-28-0024
1 Analysis of limited and nonlimited emissions of scooters was performed during several research programs of the Swiss Federal Office of Environment Forests and Landscape (FOEFL) - and as a contribution to the European project ARTEMIS *). Small scooters, which are very much used in the congested centers of the European cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were performed and the emissions were compared to the other 2-S & 4-S scooters. As nonlimited emissions the nanoparticulate emissions at cold and warm operating conditions were measured by means of SMPS, ELPI and NanoMet *). The measurements were both: at steady state and at transient operating conditions.
Technical Paper

VERT Particulate Trap Verification

2002-03-04
2002-01-0435
Particulate traps are mechanical devices for trapping soot, ash and mineral particles, to curtail emissions from Diesel engines. The filtration effectiveness of traps can be defined, independent of the pertinent engine, as a function of the particle size, space velocity and operating temperature. This method of assessment lowers cost of certifying traps for large-scale retrofitting projects [1,2]. VERT [3] is a joint project of several European environmental and occupational health agencies. The project established a trap-verification protocol that adapts industrial filtration standards [4] to include the influence of soot burden and trap regeneration phenomena. Moreover, it verifies possible catalytic effects from coating substrates and deposited catalytic active material from engine wear or fuel/ lubricant additives.
Technical Paper

Nanoparticle Emissions of a DI 2-Stroke Scooter with Varying Oil- & Fuel Quality

2005-04-11
2005-01-1101
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. It can be stated, that the oil and fuel quality have a considerable influence on the particle emissions, which are mainly oil condensates.
Technical Paper

Particle Emissions of a TDI-Engine with Different Lubrication Oils

2005-04-11
2005-01-1100
Due to increasing concern about health effects of fine and ultra-fine particles (nanoparticles) from combustion engines, the diesel particle filter technology (DPF) *) was extensively introduced to heavy duty and passenger cars in the last years. In this respect, a very important parameter is the irreversible plugging of the DPF with non-combustible ashes. The quality of lubrication oil, especially the ash content has a certain influence on regeneration intervals of diesel particle filters. In the present study, the effects of different lubrication oils on particle mass and nano-particle size distribution were investigated. The test engine was a modern diesel engine without particle filter system. A main goal was to find out, how different lubrication oils influence the particulate emissions and the contribution of oil to total particle emissions. Moreover, first results of a tracing study will be discussed.
Technical Paper

Impact of RME/Diesel Blends on Particle Formation, Particle Filtration and PAH Emissions

2005-04-11
2005-01-1728
Vegetable oils blended to Diesel fuel are becoming popular. Economic, ecological and even political reasons are cited to decrease dependence on mineral oil and improve CO2 balance. The chemical composition of these bio fuels is different from mineral fuel, having less carbon and much more oxygen. Hence, internal combustion of Diesel + RME (Rapeseed Methyl Ester) blends was tested with particular focus on nanoparticle emissions, particle filtration characteristics and PAH-emissions. Fuel economy and emissions of bus engines were investigated in traffic, on a test-rig during standardized cycles, and on the chassis dynamometer. Fuel compositions were varied from standard EN 590 Diesel with <50 ppm sulfur to RME blends of 15, 30, and 50%. Also 100 % RME was tested on the test-rig. Emissions were compared with and without CRT traps. The PAH profiles of PM were determined. Particles were counted and analyzed for size, surface, and composition, using SMPS, PAS, DC and Coulometry.
Technical Paper

Best Available Technology for Emission Reduction of Small 4S-SI-Engines

1999-09-28
1999-01-3338
1 Small off-road 4-stroke SI-engines have extraordinarily high pollutant emissions. These must be curtailed to comply with the new Swiss clean air act LRV 98. The Swiss environmental protection agency (BUWAL) investigated the state of the technology. The aim was a cleaner agricultural walk behind mower with a 10kW 4-stroke SI-engine. Two engine designs were compared: side-valve and OHV. A commercially available 3-way catalytic converter system substantially curtailed emissions: In the ISO 8178 G test-cycle-average, HC was minimized to 8% and CO to 5% of raw emissions. At part load points, the residual emission was < 1%. Simultaneously, fuel consumption improved 10%. Using a special gasoline (Swiss standard SN 181 163), the aromatic hydrocarbons were curtailed, e.g. Benzene < 1%, and fuel consumption further improved. Those results were confirmed in field tests. The engine is approved for retrofitting.
Technical Paper

Sequential Multipoint Trans-Valve-Injection for Natural Gas Engines

1999-03-01
1999-01-0565
1 Sequential multipoint portinjection of compressed natural gas (CNG) offers several advantages to CNG-engines. With the Trans-Valve-Injection system (TVI) a high speed gas jet is pulsed from the intake port through the open intake valve into the combustion chamber, where it causes effects of turbulence and charge stratification particularly at engine part load operation. The system is able to diminish the cyclic variations and to expand the limit of lean operation of the engine. The flexibility of gas pulse timing offers the potential advantage of lower emissions and fuel consumption. The TVI-System including special two-stage injectors was developed at Lucerne School of Engineering. In the present project this system was tested on a 2.8 litre natural aspirated CNG-IVECO-engine, at the Biel School of Engineering, Switzerland.
X