Refine Your Search

Topic

Search Results

Journal Article

Optimal Design of Carbon Fiber B-Pillar Structure Based on Equal Stiffness Replacement

2020-03-23
Abstract Based on the characteristics of high strength and modulus of carbon fiber-reinforced composite (CFRP), in this article, the CFRP material was used to replace the steel material of the automobile’s B-pillar inner and outer plates, and the three-stage optimization design of the lamination structure was carried out. Firstly, this article used the principle of equal stiffness replacement to determine the thickness of the carbon fiber B-pillar inner and outer plates, and the structural design of the replaced B-pillar was also carried out. Secondly, on the basis of the vehicle collision model, the B-pillar subsystem model was extracted, and the material replacement and collision simulation were carried out.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Effect of Spoke Design and Material Nonlinearity on Non-Pneumatic Tire Stiffness and Durability Performance

2021-08-06
Abstract The non-pneumatic tire (NPT) has been widely used due to its advantages of no run-flat, no need for air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications in military vehicles, earthmovers, the lunar rover, stair-climbing vehicles, etc. Recently, the Unique Puncture-Proof Tire System (UPTIS) NPT has been introduced for passenger vehicles. In this study, three different design configurations, viz., Tweel, Honeycomb, and newly developed UPTIS, have been compared. The effect of polyurethane (PU) material nonlinearity has also been introduced by applying five different nonlinear PU material properties in the spokes. The combined analysis of the PU material nonlinearity and spoke design configuration on the overall tire stiffness and spoke damage prediction is done using three-dimensional (3D) finite element modelling (FEM) simulations performed in ANSYS 16.0.
Journal Article

Studies on Friction Mechanism of NAO Brake-Pads Containing Potassium Titanate Powder as a Theme Ingredient

2017-09-17
Abstract Potassium titanate (KT) fibers/whiskers are used as a functional filler for partial replacement of asbestos in NAO friction materials (FMs). Based on little information reported in open literature; its exact role is not well defined since some papers claim it as the booster for resistance to fade (FR), or wear (WR) and sometimes as damper for friction fluctuations. Interestingly, KT fibers and whiskers (but not powder) are proved as carcinogens by the International Agency for Research on Cancer (IARC). However, hardly any efforts are reported on exploration of influence of KT powder and its optimum amount in NAO FMs (realistic composites) in the literature. Hence a series of five realistic multi-ingredient compositions in the form of brake-pads with similar parent composition but varying in the content of KT powder from 0 to 15 wt% (in the steps of 3) were developed. These composites were characterized for physical, mechanical, chemical and tribological performance.
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Journal Article

Disc Pad Physical Properties vs. Porosity: The Question of Compressibility as an Intrinsic Physical Property

2017-09-17
Abstract Disc pad physical properties are believed to be important in controlling brake friction, wear and squeal. Thus these properties are carefully measured during and after manufacturing for quality assurance. For a given formulation, disc pad porosity is reported to affect friction, wear and squeal. This investigation was undertaken to find out how porosity changes affect pad natural frequencies, dynamic modulus, hardness and compressibility for a low-copper formulation and a copper-free formulation, both without underlayer, without scorching and without noise shims. Pad natural frequencies, modulus and hardness all continuously decrease with increasing porosity. When pad compressibility is measured by compressing several times as recommended and practiced, the pad surface hardness is found to increase while pad natural frequencies and modulus remain essentially unchanged.
Journal Article

Landing Response Analysis on High-Performance Aircraft* Using Estimated Touchdown States

2019-04-08
Abstract A novel use of state estimation methods as initial input for a landing response analysis is proposed in this work. Six degrees of freedom (DOF) non-linear landing response model is conceived by considering longitudinal dynamics of aircraft as a rigid body with heave-and-pitch motions coupled onto a bicycle landing gear † arrangement. The DOF for each landing gear consist of vertical and longitudinal motions of un-sprung mass, considering strut bending flexibility. The measurement data for state estimation is obtained for three landing cases using non-linear flight mechanics model interfaced with pilot-in-loop simulation. State estimation methods such as Upper Diagonal Adaptive Extended Kalman Filter (UD-AEKF) with fuzzy-based adaptive tuning and Un-scented Kalman Filter (UKF) were adapted for landing maneuver problem. On the basis of estimation error metrics, aircraft state from UKF is considered during onset of touchdown.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Stall Mitigation and Lift Enhancement of NACA 0012 with Triangle-Shaped Surface Protrusion at a Reynolds Number of 105

2019-11-21
Abstract Transient numerical simulations are conducted over a NACA 0012 airfoil with triangular protrusions at a Reynolds number (Re) of 100000 using the γ-Reθ transition Shear Stress Transport (SST) turbulence model. Protrusions of heights 0.5%c, 1%c, and 2%c are placed at one of the three locations, viz, the leading edge (LE), 5%c on the suction surface, and 5%c on the pressure surface, while the angle of attack (AOA) is varied between 0° and 20°. Results obtained from the time-averaged solution of the unsteady Navier-Stokes equation indicate that the smaller protrusion placed at 5%c on the suction surface improves the post-stall lift coefficient by up to 59%, without altering the pre-stall characteristics. The improvement in time-averaged lift coefficients comes with enhanced flow unsteadiness due to vigorous vortex shedding.
Journal Article

Conceptual Design, Material, and Structural Optimization of a Naval Fighter Nose Landing Gear for the Estimated Static Loads

2019-12-13
Abstract The Naval Nose Landing Gear (NLG) structural assembly consists of components with complex structural geometry and critical functionalities. The landing gear components are subjected to high static and dynamic loads, so they must be appropriately designed, dimensioned, and made by materials with mechanical characteristics that meet high strength, stiffness, and less weight requirements. This article contributes to the shape, size, and material optimization for the NLG of a supersonic naval aircraft for the estimated static loads. The estimated modal frequency values of the NLG assembly using Finite Element Analysis (FEA) software were compared with available Ground Vibration Test data of an aircraft to literally prove the accuracy and suitability of finite element (FE) model that can be used for any further analysis.
Journal Article

ERRATA

2020-05-12
Abstract ERRATUM
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
Journal Article

Mechanical Response of Hybrid Laminated Polymer Nanocomposite Structures: A Multilevel Numerical Analysis

2020-10-19
Abstract The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Analytical Estimation of Infrared Signature of Converging and Converging-Diverging Nozzles of Jet Engine

2021-04-21
Abstract Jet engine hot parts (e.g., jet nozzle) are a crucial source of aircraft’s infrared (IR) signature from the rearview, in 1.9-2.9 μm and 3-5 μm bands. The exhaust nozzle design used in a jet aircraft affects its performance and IR signature (which is also affected just by performance) from the engine layout. For supersonic aircraft (typically for M ∞ > 1.5), a converging-diverging (C-D) nozzle is preferred over a convergent nozzle for optimum performance. The diverging section of the C-D nozzle has a full range of visibility from the rearview; hence, it was not considered a prudent choice for low IR observability. This theoretical study compares the IR signature of the C-D nozzle with that of the convergent nozzle from the rearview in 1.9-2.9 μm and 3-5 μm bands for the same thrust.
Journal Article

Flight Performance Envelope for an Aircraft with a Fixed-Pitch Propeller

2021-07-14
Abstract A flight envelope for aircraft performance in the vertical plane illustrates the performance limitations on the aircraft, usually indicating the minimum and maximum airspeeds at a given altitude, the airspeeds for maximum rate of climb and maximum angle of climb at a given altitude, and the maximum altitude or absolute ceiling of the aircraft. This study outlines the procedure for constructing a vertical-plane flight performance aircraft for an aircraft with a fixed-pitch propeller, which involves additional complexities due to the variable propeller efficiency. The propeller performance, engine power, and drag polar models are described, as is the computational procedure. Envelopes for the flight performance in the vertical plane are presented for a particular remotely-piloted aircraft at different take-off weights.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
X