Refine Your Search

Topic

Search Results

Journal Article

Development of Safe and Sustainable EPAS (Electric Power Assist Steering) System for Emerging Markets

2018-04-07
Abstract The vehicle attributes developed for emerging markets like India are unique because of different topographical conditions, diversity and culture within the different states. Major attributes in vehicle development process is development of safe and sustainable vehicle systems (steering, brakes etc.) for the driver. India is presently an emerging market for automotive sector. With booming economy, purchasing power of the consumer has gone up in the past few years. Most of young population of India have started buying the cars. At the same time, India’s road infrastructure, vehicle regulations have exalted over the years. The consumer cognizance towards the vehicles have started changing now. They want safer, robust system in their vehicles with new convenience features at affordable cost. In recent years, almost all OEM’s in India have migrated steering systems from HPAS to EPAS for payback on fuel economy and weight.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses

2018-04-17
Abstract Making use of a specifically designed dynamical vehicle model, the authors here presented the results of an activity for the evaluation of energy consumption and CO2 emissions of buses for urban applications. Both conventional and innovative (series hybrid, and fully electric) vehicles were considered to obtain interesting comparative conclusions. The derived tool was used to simulate the dynamical behaviour of these vehicles on a number of kinematic profiles measured during real buses operation in different contexts, varying from really congested city centre routes to fast-lane operated services. It was so possible to evaluate the energetic performances of those buses on a Tank-to-Wheel (TTW) basis.
Journal Article

Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure

2018-11-09
Abstract The tire vertical load and inflation pressure have great influence on tire steady- and non-steady-state characteristics and, consequently, on the vehicle handling and stability. The objective of this article is to reveal the coupling effect of tire vertical load and inflation pressure on tire characteristics and then introduce an improved UniTire side force model including such coupling effect through experimental and theoretical analysis. First, the influence of the tire vertical load and inflation pressure on the tire characteristics is presented through experimental analysis. Second, the theoretical tire cornering stiffness and lateral relaxation length model are introduced to study the underlying mechanism of the coupling effect. Then, an improved UniTire side force model including the coupling effect of tire vertical load and inflation pressure is derived. Finally, the proposed improved UniTire side force model is validated through tire steady-state and transient data.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

Landing Response Analysis on High-Performance Aircraft* Using Estimated Touchdown States

2019-04-08
Abstract A novel use of state estimation methods as initial input for a landing response analysis is proposed in this work. Six degrees of freedom (DOF) non-linear landing response model is conceived by considering longitudinal dynamics of aircraft as a rigid body with heave-and-pitch motions coupled onto a bicycle landing gear † arrangement. The DOF for each landing gear consist of vertical and longitudinal motions of un-sprung mass, considering strut bending flexibility. The measurement data for state estimation is obtained for three landing cases using non-linear flight mechanics model interfaced with pilot-in-loop simulation. State estimation methods such as Upper Diagonal Adaptive Extended Kalman Filter (UD-AEKF) with fuzzy-based adaptive tuning and Un-scented Kalman Filter (UKF) were adapted for landing maneuver problem. On the basis of estimation error metrics, aircraft state from UKF is considered during onset of touchdown.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Stall Mitigation and Lift Enhancement of NACA 0012 with Triangle-Shaped Surface Protrusion at a Reynolds Number of 105

2019-11-21
Abstract Transient numerical simulations are conducted over a NACA 0012 airfoil with triangular protrusions at a Reynolds number (Re) of 100000 using the γ-Reθ transition Shear Stress Transport (SST) turbulence model. Protrusions of heights 0.5%c, 1%c, and 2%c are placed at one of the three locations, viz, the leading edge (LE), 5%c on the suction surface, and 5%c on the pressure surface, while the angle of attack (AOA) is varied between 0° and 20°. Results obtained from the time-averaged solution of the unsteady Navier-Stokes equation indicate that the smaller protrusion placed at 5%c on the suction surface improves the post-stall lift coefficient by up to 59%, without altering the pre-stall characteristics. The improvement in time-averaged lift coefficients comes with enhanced flow unsteadiness due to vigorous vortex shedding.
Journal Article

Conceptual Design, Material, and Structural Optimization of a Naval Fighter Nose Landing Gear for the Estimated Static Loads

2019-12-13
Abstract The Naval Nose Landing Gear (NLG) structural assembly consists of components with complex structural geometry and critical functionalities. The landing gear components are subjected to high static and dynamic loads, so they must be appropriately designed, dimensioned, and made by materials with mechanical characteristics that meet high strength, stiffness, and less weight requirements. This article contributes to the shape, size, and material optimization for the NLG of a supersonic naval aircraft for the estimated static loads. The estimated modal frequency values of the NLG assembly using Finite Element Analysis (FEA) software were compared with available Ground Vibration Test data of an aircraft to literally prove the accuracy and suitability of finite element (FE) model that can be used for any further analysis.
Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

ERRATA

2020-05-12
Abstract ERRATUM
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Analytical Estimation of Infrared Signature of Converging and Converging-Diverging Nozzles of Jet Engine

2021-04-21
Abstract Jet engine hot parts (e.g., jet nozzle) are a crucial source of aircraft’s infrared (IR) signature from the rearview, in 1.9-2.9 μm and 3-5 μm bands. The exhaust nozzle design used in a jet aircraft affects its performance and IR signature (which is also affected just by performance) from the engine layout. For supersonic aircraft (typically for M ∞ > 1.5), a converging-diverging (C-D) nozzle is preferred over a convergent nozzle for optimum performance. The diverging section of the C-D nozzle has a full range of visibility from the rearview; hence, it was not considered a prudent choice for low IR observability. This theoretical study compares the IR signature of the C-D nozzle with that of the convergent nozzle from the rearview in 1.9-2.9 μm and 3-5 μm bands for the same thrust.
Journal Article

Flight Performance Envelope for an Aircraft with a Fixed-Pitch Propeller

2021-07-14
Abstract A flight envelope for aircraft performance in the vertical plane illustrates the performance limitations on the aircraft, usually indicating the minimum and maximum airspeeds at a given altitude, the airspeeds for maximum rate of climb and maximum angle of climb at a given altitude, and the maximum altitude or absolute ceiling of the aircraft. This study outlines the procedure for constructing a vertical-plane flight performance aircraft for an aircraft with a fixed-pitch propeller, which involves additional complexities due to the variable propeller efficiency. The propeller performance, engine power, and drag polar models are described, as is the computational procedure. Envelopes for the flight performance in the vertical plane are presented for a particular remotely-piloted aircraft at different take-off weights.
X