Refine Your Search

null

Search Results

Viewing 1 to 10 of 10
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Journal Article

Analysis of a Shift Quality Metric for a Dual Clutch Transmission

2013-04-08
2013-01-0825
This paper defines the shifting quality evaluation index in detail for DCT (Dual Clutch Transmission) from the perspective of control. The vehicle model for DCT is built using MATLAB / Simulink tools, including the models of driver, load, controller, engine, clutch, transmission (synchronizer), actuators, and vehicle dynamics model. And then a control quality evaluation system is designed. The AHP (Analytic Hierarchy Process) is used to determine weights of the control quality evaluation index and the shifting quality control objectives through the co-simulation of vehicle system model and evaluation system, namely expected control range of each evaluation index, which provides reference and guidance for shifting control strategy and control algorithm of DCT.
Technical Paper

Combined Control Strategy for Engine Rotate Speed in the Shift Process of Automated Mechanical Transmission

2004-03-08
2004-01-0427
For the purpose of lessening fuel consumption, engine noise, shift jerk and clutch friction work in the shift process of Automatic Mechanical Transmission (AMT), a fuzzy-bang bang dual mode control strategy for engine rotate speed is put forward in this paper, which takes the advantages of time optimal control and fuzzy control. The combined control strategy is applied to the shift process control of AMT test minibus named SC6350 and proved to be successful by the experimental results.
Technical Paper

Hydrodynamic Synchromesh Automated Transmission Optimization and Control Aimed for Fuel Consumption Reduction

2012-04-16
2012-01-0109
With the work medium of automatic transmission fluid (ATF), torque converter (TC) functions perfect performances such as smooth start, torque amplification, and the peak load restraint, and these properties makes the TC most suitable for off-road vehicles. An idea on the integration of TC and synchromesh gear box with their respective advantages is explored and introduced in this paper; here the system is named as Hydrodynamic Synchromesh Automated Transmission (HSAT). An automated control system makes the gear box as an automated manual transmission (AMT). HSAT takes TC as the starting device and accomplish shift process through AMT. The flow field optimized TC structure and the match calculation among the three parts of engine, TC and synchromesh gearbox; made this powertrain system has a good performance and the ability to reduce the fuel consumption.
Technical Paper

A Multi-Layered and Modular Design Approach for Developing AMT Control System in Battery Electric Vehicles

2012-04-16
2012-01-0963
The battery electric vehicle (BEV) equipped with automatic mechanical transmission (AMT) can realize gear-shifting automatically based on the optimal shift schedule and thereby gains higher economy and dynamics performances as well as easy drivability. As one of electronic control systems in BEV, the AMT control system takes charge of drivetrain control and plays an important role. However, nowadays the development of electronic control systems in automobile industry is facing a variety of challenges which mainly arise from complex functional requirements and market pressure, and it's the same to the development of AMT control system. This paper presents a multi-layered and modular design approach for the development of AMT control system in a battery electric bus. The multi-layered design approach divides system into two high-level layers, each of which is then divided into a number of low-level layers.
Technical Paper

A Strategy of On-board Fault Diagnosis of Automated Mechanical Transmission

2000-03-06
2000-01-1160
The paper introduces an on-board fault diagnosis strategy based on analytical redundancy suit for automated mechanical transmission (AMT). Through experiment and theory analysis an identified engine model, a gear box model and a dry clutch model controlled by hydraulic actuators are respectively established. The information redundancy in the local models of the power train and the structure logic relations among the assemblages is used to detect and diagnose the fault in the sensors, the actuators and the unit assemblages of the AMT system. The method has been used in the AMT control system developed for the SVWSANTANA2000.
Technical Paper

Study on Transient Oil-Filling Characteristics of Hydraulic Retarder based on Modular Modeling

2015-04-14
2015-01-1373
With the continuous improvement of the road condition, commercial vehicles get to be faster and more overloaded than before, which puts higher pressure on the vehicle braking system. Conventional friction braking has been difficult to meet the needs of high-power commercial vehicle. The auxiliary braking equipment will become the future trend for commercial vehicle. Hydraulic retarder is superior to secondary braking equipment. Previously hydraulic retarder research mainly focus on flow field analysis, the braking torque calculation, cascade system optimization and control methods for hydraulic retarder. The gas-liquid two-phase flow in working chamber is less researched. Based on this, this article discusses on the hydraulic retarder from two aspects. Firstly, this paper presents a block modeling method for hydraulic retarder system.
Technical Paper

Optimization of DCT Power-On Upshift Control Strategy Based on PSO Algorithm

2015-04-14
2015-01-1109
This investigation presents a methodology to develop and optimize shift process control strategy to improve shift quality as perceived by drivers during power-on upshift events for Dual Cultch Transmission (DCT) vehicles. As part of the first study, the main factors affecting shift quality during shifting process under typical working conditions are analyzed. And taking the power-on upshift as example, dynamic model of DCT shifting process is build. An Integrated control strategy is proposed for power-on upshift, which during torque phase slipping revolving speed controller is adapted to harmonically control two clutches power switching process, and during Inertial phase engine torque is regulated to synchronize with the value of target gear while holding the oncoming clutch pressure. Oncoming clutch oil pressure gradient in torque phase and engine torque reducing target decrement in inertial phase are chosen as controlled quantity.
Technical Paper

Research on Shift Control Strategy in Braking Conditions of Automatic Transmission Vehicles based on Fuzzy Inference

2014-04-01
2014-01-1742
In a traditional shift control strategy, the gear range is selected based on the throttle opening and the vehicle speed. The disadvantage of two-parameter based system is that the shift map is lack of adaptability in certain special conditions. The driving environment and the true intentions of the drivers are not fully taken into account by the shift control system. Therefore, improving the feasibility of the shift control strategy for the true intentions of the driver and driving environment is of great significance. Under braking conditions, Automatic transmission shift map with two parameters is unable to use engine braking effectively, which affects the drivability and safety of vehicles greatly. This paper presents a newly developed shift control strategy under braking conditions. First of all, the necessity of engine braking was analyzed.
Technical Paper

Fuzzy PID Based Optimization of Starting Control for AMT Clutch of Heavy-duty Trucks

2018-04-03
2018-01-1166
Starting control has become a troublesome issue in the developing field of the control system for heavy-duty trucks, due to the complexity of vehicle driving and the variability of driver's intention. The too fast clutch engagement may result in serious impact, influence on the comfort and fatigue life, and even the engine flameout, while the too slow clutch engagement may lead to long time of friction, the increased temperature, and accelerated wear of friction pair, as well as influence on the power performance and fatigue life[1]. Therefore, the key technique of starting control is clutch engagement control, for which the fuzzy PID based optimization of starting control for AMT clutch is proposed, with the pneumatic AMT clutch of heavy-duty trucks as the research object.
X