Refine Your Search

Topic

Affiliation

Search Results

Journal Article

ERRATUM

2017-09-17
2017-01-2520.1
This is a errata for 2017-01-2520.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Size and Weight Reduction Technology for a Hybrid System

2009-04-20
2009-01-1339
A small hybrid system was developed for the 2009 model hybrid vehicle. The Intelligent Power Unit (IPU), which consists of a high-voltage battery and a Power Control Unit (PCU), occupies 19% less volume and is 28% lighter than the previous model(1). In order to reduce the size and weight of the IPU, the number of nickel-metal hydride battery modules was reduced, enabling the battery box to be made smaller and lighter. In order to provide the necessary output with fewer battery modules, the length of the battery electrodes was increased, thus raising the output from each battery module. The volume and weight of the PCU were reduced by integrating the inverter, DC-DC converter, and ECU into a single package. The size reduction of the IPU enabled the IPU to be installed at the bottom of the luggage compartment. As a result, the available space in the luggage compartment is the same as that of a conventional vehicle.
Journal Article

Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

2009-04-20
2009-01-1309
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model incorporated fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). Based on PSAT simulations of the blended charge depleting (CD) operation, grid electricity accounted for a share of the vehicle’s total energy use ranging from 6% for PHEV 10 to 24% for PHEV 40 based on CD vehicle mile traveled (VMT) shares of 23% and 63%, respectively. Besides fuel economy of PHEVs and type of on-board fuel, the type of electricity generation mix impacted the WTW results of PHEVs, especially GHG emissions.
Journal Article

Development of Power Control Unit for Compact-Class Vehicle

2009-04-20
2009-01-1310
Toyota Motor Corporation has developed the new compact-class hybrid vehicle (HV). This vehicle incorporates Toyota Hybrid System II (THS-II) to improve fuel efficiency. For this system we have developed a new power control unit (PCU) that features size reduction, light weight, and high efficiency. We have also improved the ability to mass produce these units with the expectation of rapid popularization of HV. The PCU, which plays an important role in THS-II, is our main focus in this paper. Its development is described.
Journal Article

A Urea Decomposition Modeling Framework for SCR Systems

2009-04-20
2009-01-1269
Selective catalytic reduction (SCR) is allowing diesel engines to reach NOx emission levels which are unachievable in-cylinder. This technology is still evolving, and new catalyst formulations which provide higher performance and greater durability continue to be developed. Usually, their performance is measured on a flow reactor using ammonia as the reductant. However, in mobile applications a urea-water solution is used instead, and urea decomposition by thermolysis and hydrolysis provides the required ammonia to the catalyst. It is well known that urea decomposition is incomplete by the inlet face of the converter, and this is at least one reason why on-engine performance is generally lower than would be expected from reactor tests. Previous modeling of urea-water droplets has focused on developing detailed sub-models that can be implemented into computational fluid dynamics (CFD) codes.
Journal Article

Entrainment Waves in Diesel Jets

2009-04-20
2009-01-1355
Recent measurements in transient diesel jets have shown that fuel in the wake of the injection pulse mixes with ambient gases more rapidly than in a steady jet. This rapid mixing after the end of injection (EOI) can create fuel-lean regions near the fuel injector. These lean regions may not burn to completion for conditions where autoignition occurs after EOI, as is typical of low-temperature combustion (LTC) diesel engines. In this study, transient diesel jets are analyzed using a simple one-dimensional jet model. The model predicts that after EOI, a region of increased entrainment, termed the “entrainment wave,” travels downstream at twice the initial jet propagation rate. The entrainment wave increases mixing by up to a factor of three. This entrainment wave is not specific to LTC jets, but rather it is important for both conventional diesel combustion and LTC conditions.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Keys to Understanding Spray-guided Combustion of a Narrow-spacing Gasoline Direct Injection SI Engine with a Centrally Mounted Multi-hole Injector

2009-04-20
2009-01-1497
Spray-guided gasoline direct injection SI engines attract as one of new generation lean-burn engines to promise CO2 reduction. These typically adopt “narrow-spacing” concept in which an injector is centrally mounted close to a spark plug. Therefore, geometric targets of the fuel spray and a position of the spark plug have to be exactly limited to maintain a proper mixture in the spark gap. In addition, the stable combustion window is narrow because the spark ignition is limited in a short time during and immediately after the injection. These spatial and temporal restrictions involve some intractable problems concerning the combustion robustness due to the complicate phenomena around the spark plug. The local mixture preparation near the spark plug significantly depends on the spray-induced charge motion. The intense flow induced by the motion blows out and stretches the spark, thereby affecting the spark discharge performance.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Development of a Fuel Injection Strategy for Partially Premixed Compression Ignition Combustion

2009-04-20
2009-01-1527
A production version of a V-8 engine was redesigned to run on partially premixed charge compression ignition (PCCI) combustion mode with conventional diesel fuel. The objective of the PCCI combustion experiments was to obtain low engine-out nitrogen oxide (NOx) and after-treatment tolerant soot emission level. Two fuel injection strategies were used during the PCCI combustion experiments: a) pilot-with-main injection strategy (Pil-M), b) pilot-with-main-and-post (PMP) injection strategy. In the Pil-M injection strategy, a significant fraction of the fuel was delivered early during the compression stroke. The early pilot helped to prepare a lean-mixture of enhanced homogeneity before the combustion was initiated. The combustion of this pilot injection followed by the main combustion helped to reduce soot for a constant NOx value. The pilot-injection timing and quantity had to be selected appropriately to retain the fuel-efficiency.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
X