Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of Vehicle HMI Module Using Model-Based Design and RCP

2009-04-20
2009-01-1415
LCDs are effective to display abundant information in a compact space. Therefore, the use of TFT or DOT metric displays in dashboard instrument display is getting popular in recent years. However, it is important issue for car makers how to let users know information about vehicle functions or outside environment and manage plentiful information. In this paper, the Rapid Control Prototyping (RCP) tool is proposed to design and standardize HMI logic associated with display contents in TFT or dot type LCD applied to an instrument cluster. In addition, it is possible to estimate HMI logic in advance by using this RCP. By this process, we can minimize the design and validation time of the vehicle specific HMI logic and improve the quality. As a result, we can dramatically reduce the total period of developing an instrument cluster.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Herschel Heaters Control Modeling and Correlation

2009-07-12
2009-01-2348
Herschel and Planck satellites have recently undergone the thermal vacuum and thermal balance (TVTB) test which was performed in the ESA-ESTEC Large Space Simulator for Herschel and in Centre Spatial de Liège (CSL) for Planck. One of the specific targets of the Herschel test was the verification of the thermal stability of two HIFI units (required to be better than 3.10−4 °C/s) and of the Star Tracker mounting plate (required to be better than 2.5.10−3 °C/s), with particular attention on the performance of the relevant feedback control loops. Control system design and model predictions are presented and compared against the test results. Further discussion on the requirement verification is provided.
Journal Article

Analyses of Several Space Radiation-Mitigating Materials: Computational and Experimental Results

2009-07-12
2009-01-2338
Long-term exposure to the space radiation environment poses deleterious effects to both humans and space systems. The major sources of the radiation effects come from high energy galactic cosmic radiation and solar proton events. In this paper we investigate the radiation-mitigation properties of several shielding materials for possible use in spacecraft design, surface habitats, surface rovers, spacesuits, and temporary shelters. A discussion of the space radiation environment is presented in detail. Parametric radiation shielding analyses are presented using the NASA HZETRN 2005 code and are compared with ground-based experimental test results using the Loma Linda University Proton Therapy facility.
Journal Article

Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

2009-07-12
2009-01-2420
JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the α of either type of surface. A full monolayer can increase the α/ε ratio by a factor of 3–4 over a clean surface. Little angular dependence of the α of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30° from the surface. The dusted surfaces showed the most angular dependence of α when the incidence angle was in the range of 25° to 35°.
Journal Article

Data Abstraction Architecture for Monitoring and Control of Lunar Habitats

2009-07-12
2009-01-2465
A Lunar habitat will be highly sensored and generate large amounts of data or telemetry. For this data to be useful to humans monitoring these systems and to automated algorithms controlling these systems it will need to be converted into more abstract data. This abstracted data will reflect the trends, states and characteristics of the systems and their environments. Currently this data abstraction process is manual and ad hoc. We are developing a Data Abstraction Architecture (DAA) that allows engineers to design software processes that iteratively convert habitat data into higher and higher levels of abstraction. The DAA is a series of mathematical or logical transformations of telemetry data to provide appropriate inputs from a hardware system to a hardware system controller, system engineer, or crew. The DAA also formalizes the relationships between data and control and the relationships between the data themselves.
Journal Article

Oxygen Production via Carbothermal Reduction of Lunar Regolith

2009-07-12
2009-01-2442
The Moon is composed of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material that can be processed to produce oxygen. One attractive method to extract oxygen from the lunar regolith is the carbothermal reduction process. This paper discusses recent development work conducted through the PILOT project under the NASA OPTIMA program. The OPTIMA test program utilizes a modular technology suite of ISRU excavation, oxygen extraction, oxygen storage, and oxygen distribution hardware sized to be consistent with the draft Constellation requirements for oxygen extraction from the regolith to support the early lunar outpost (1 MT O2/year).
Journal Article

Standardization of Graphics for Service Information and Translation Expense Reduction

2009-10-06
2009-01-2857
The cost of human natural language translation of Service Information, Assembly Instructions, Training Materials, Operator Manuals and other similar documents is a major expense for manufacturers. One translation avoidance method involves replacing most of a document’s text with still and/or animated graphics. While the graphics with minimum text concept has savings potential, clarity of communication must be maintained for widespread application of this technique. The necessary clarity should be achieved if standards are established for the symbols and graphical conventions used. This paper provides an example of a repair procedure documented using the graphics with minimum text paradigm, describes many of the anticipated standards and provides an update on the progress towards achieving a standard development project.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Consideration of Critical Cornering Control Characteristics via Driving Simulator that Imparts Full-range Drift Cornering Sensations

2009-10-06
2009-01-2922
A driving simulator capable of duplicating the critical sensations incurred during a spin, or when a driver is engaged in drift cornering, was constructed by Mitsubishi Heavy Industries, Ltd., and Hiromichi Nozaki of Kogakuin University. Specifically, the simulator allows independent movement along three degrees of freedom and is capable of exhibiting extreme yaw and lateral acceleration behaviors. Utilizing this simulator, the control characteristics of drift cornering have become better understood. For example, after a J-turn behavior experiment involving yaw angle velocity at the moment when the drivers attention transitions to resuming straight ahead driving, it is now understood that there are major changes in driver behavior in circumstances when simulator motions are turned off, when only lateral acceleration motion is applied, when only yaw motion is applied, and when combined motions (yaw + lateral acceleration) are applied.
Journal Article

Managing Aircraft Simulation Requirements with Content-Based Image Retrieval

2009-11-10
2009-01-3149
Requirements analysis for aircraft simulators is often driven by photographs and videos of the actual aircraft. An engineer may gather and organize hundreds or even thousands of source photos of various instruments and devices unique to the aircraft. Managing all of this source information and referencing it to generate software requirements can be challenging and time-consuming. This paper explores Content Based Image Retrieval (CBIR) techniques to automatically process and search those images to generate basic requirements and to facilitate reuse. An unsupervised clustering algorithm groups source images based on minimal user input. Images processed in this way can also be queried by image similarity, thereby allowing project managers to find common source material among projects. The effectiveness of these techniques is demonstrated on an example cockpit.
Journal Article

The Systems Engineering Relationship between Qualification, Environmental Stress Screening and Reliability

2009-11-10
2009-01-3274
The Systems Engineering Relationship between Qualification, Environmental Stress Screening (ESS), and Reliability is often poorly understood: as a consequence resources are expended on efforts that degrade inherent hardware reliability and vitiate reliability predictions. This article expatiates on the Systems Engineering relationship between Qualification and ESS, and how their proper application enhances inherent reliability and supports credible reliability predictions. Examples of how their uninformed application degrades inherent hardware reliability and vitiates reliability predictions, and how program/equipment managers can avoid this, are presented.
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Journal Article

Development of an Enhanced Brine Dewatering System

2009-07-12
2009-01-2486
Water recovery is essential for long-duration space exploration transit and outpost missions. Primary stage wastewater recovery systems partially satisfy this need, and generate concentrated wastewater brines that are unusable without further processing. The Enhanced Brine Dewatering System (EBDS) is being developed to allow nearly complete recovery of water from Lunar Outpost wastewater brines. This paper describes the operation of the EBDS and discusses the development and testing of the major functional materials, components, and subsystems, including the wastewater brine ersatz formulations that are used in subsystem testing. The assembly progress of the EBDS full system prototype is also discussed, as well as plans for testing the prototype hardware.
Journal Article

On the Establishment of the Analysis and Verification Methods Regarding the Air Ventilation with Very Low Velocity in JEM (KIBO) as the First Manned Space Development in Japan

2009-07-12
2009-01-2552
Japanese Experiment Module (JEM) called KIBO is the first manned space structure in Japan. Among several high technologies of JEM development, achievement of the air ventilation (AV) under the micro gravity was challenging because the requirements were very difficult to meet. The verification test in the module level under the operation of the flight hardware had a serious problem by the natural convection owing to the heat generation by the flight hardware. The analysis had problems how to verify its own validity because the turbulent flow around diffuser exits in addition to the laminar flowfield where the velocity is extremely small. This paper describes the solution of these problems in the analytical and testing verification points of view. As a result, we found our analysis applied to the AV performance could provide the complicated flowfield in low velocity with the effects of turbulent flow as well as natural convection.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
X