Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

Benefits and Drawbacks of Compression Ratio Reduction in PCCI Combustion Application in an Advanced LD Diesel Engine

2009-04-20
2009-01-1447
The present paper describes an experimental study on the effect of the compression ratio on the performance of a LD diesel engine operating with a PCCI calibration, near the estimated EURO 6/Tier2 Bin5 NOx emission limits. The research activity is the result of a collaborative project between Istituto Motori and Centro Ricerche Fiat aimed to carry out an exhaustive analysis of the compression ratio (CR) influence on the performance of a LD diesel engine. Starting from a reference engine configuration the CR was reduced in two steps sequentially. Each CR value was characterized under PCCI operation mode and, under conventional diesel operating mode, at maximum torque. The exploration of the PCCI application in the NEDC operating area was performed prefixing limits on maximum fuel consumption, maximum pressure rise and maximum tolerable smoke. The main result was that no significant increment in PCCI application area reducing the CR was possible without overcoming the limits.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Parametric Studies of the Impact of Turbocharging on Gasoline Engine Downsizing

2009-04-20
2009-01-1472
The internal combustion engine and associated powertrain are likely to remain the mainstay of mobility over the next twenty years and to remain a significant portion of the portfolio of technologies employed over a much longer period of time. Efficient combustion of all fuels (petroleum based or alternative) requires copious amounts of air particularly with downsized engines. Turbocharging technology thus becomes an even more critical part of reducing both global warming gas and urban pollutant emissions from IC engines. Gasoline engine downsizing and turbocharging have been shown to improve fuel economy by ∼20% in production vehicles. In addition to data over a wide range of engines/vehicles, the results of a simple analysis done on vehicles/engines/drive cycles are presented to show the benefits of turbocharging and downsizing in a parametric variation of downsizing in combination with other technologies.
Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Journal Article

Analysis of Compromising Degree of an Internal Combustion Engine Using Biodiesel

2009-04-20
2009-01-0895
This work intends to present a study about the application of a standard methodology for the evaluation of the mechanical components compromise as result of the use of biodiesel, based on the lubricating oil analyses. The fuel oil that will be analyzed is produced in PUCRS' Faculty of Chemistry. As we know, the physical-chemical analysis of lubricating oils can indicate a series of parameters that allow valuing the quality and the compromising degree of the mechanical engine components. The results of these analyses will be based on tests in an Electronic Microscopy. This type of analysis will allow us to determine the quality of the lubricating oil, degradation and contamination with metal materials (mechanical compromising). The work presupposes the functioning of Diesel engine cycle with several proportions of biodiesel (B2, B5, B10, B20 and B100).
Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Soot Emission Measurements and Validation of a Mean Value Soot Model for Common-Rail Diesel Engines during Transient Operation

2009-06-15
2009-01-1904
Measurements of the soot emissions and engine operating parameters from a diesel engine during transient operation were used to investigate the influence of transient operation on the soot emissions, as well as to validate a realtime mean value soot model (MVSM, [1]) for transient operation. To maximize the temporal resolution of the soot emission and engine parameter measurements (in particular EGR), fast instruments were used and their dynamic responses characterized and corrected. During tip-in transients, an increase in the soot emissions was observed due to a short term oxygen deficit compared to steady-state operation. No significant difference was seen between steady-state and transient operation for acceleration transients. When the MVSM was provided with inputs of sufficient temporal resolution, it was capable of reproducing the qualitative and, in part, quantitative soot emission trends.
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Innovation Trends in the Field of Internal Combustion Engines

2009-06-15
2009-01-1944
One reliable way to measure the research activity in the field of engine technology is through the number of patent applications that are submitted to different patent offices in the world. This paper offers a thorough statistical analysis of the innovation trends related to downsizing in Europe, USA, Japan, China and Korea in the field of internal combustion engines during the last 10 years, as seen by the European Patent Office. It demonstrates which technical fields (e.g. super- and turbocharging, direct fuel injection systems, hybrid technology, variable valve actuation, exhaust gas recirculation, etc.) are the most active, who are the most important players and which country attracts the highest number of applications. Subfields of certain technical fields are also analyzed. The technical fields discussed are chosen according to the International Patent Classification (IPC) scheme.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Herschel Heaters Control Modeling and Correlation

2009-07-12
2009-01-2348
Herschel and Planck satellites have recently undergone the thermal vacuum and thermal balance (TVTB) test which was performed in the ESA-ESTEC Large Space Simulator for Herschel and in Centre Spatial de Liège (CSL) for Planck. One of the specific targets of the Herschel test was the verification of the thermal stability of two HIFI units (required to be better than 3.10−4 °C/s) and of the Star Tracker mounting plate (required to be better than 2.5.10−3 °C/s), with particular attention on the performance of the relevant feedback control loops. Control system design and model predictions are presented and compared against the test results. Further discussion on the requirement verification is provided.
X